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Abstract 

Visual inference involves using prior knowledge and contextual cues to make educated guesses about incomplete 
or ambiguous information. This study explores the role of visual inference as a function of expertise in the con-
text of fingerprint examination, where professional examiners need to determine whether two fingerprints were 
left by the same person, or not, often based on limited or impoverished visual information. We compare expert 
and novice performance on two tasks: inferring the missing details of a print at an artificial blank spot (Experiment 
1) and identifying the missing surrounds of a print given only a small fragment of visual detail (Experiment 2). We 
hypothesized that experts would demonstrate superior performance by leveraging their extensive experience 
with global fingerprint patterns. Consistent with our predictions, we found that while both experts and novices 
performed above chance, experts consistently outperformed novices. These findings suggest that expertise in fin-
gerprint examination involves a heightened sensitivity to gist, or global image properties within a print, enabling 
experts to make more accurate inferences about missing details. These results align with prior research on perceptual 
expertise in other expert domains, such as radiology, and extend our understanding of scene and face recognition 
to fingerprint examination. Our findings show that expertise emerges from an ability to combine local and global 
visual information—experts skillfully process both the fine details and overall patterns in fingerprints. This research 
provides insight into how perceptual expertise supports accurate visual discrimination in a high-stakes, real-world 
task with broader implications for theoretical models of visual cognition.

Keywords  Natural image perception, Fingerprints, Forensic science, Expertise, Perceptual expertise, Visual inference, 
Fingerprint examination, Perceptual expertise, Forensic science, Gist perception, Scene-based recognition

Introduction
The sweeping outline of a scene catches our eye before 
we notice the intricate details within it—much like rec-
ognizing a friend from afar before discerning their facial 
features up close. Navon (1977) demonstrated this global 

precedence experimentally by showing participants a 
series of large letters composed of smaller ones. Par-
ticipants identified the large letters more quickly than 
the smaller ones. Our capacity to rapidly process the 
‘gist’ of complex images has since been widely demon-
strated. Oliva and Torralba (2006) showed that people 
can quickly grasp the gist of a scene—distinguishing 
a bustling cityscape from a serene forest—by relying 
on low-dimensional spatial configurations that form 
a global summary of the whole image. Indeed, people 
can categorize natural scenes with remarkable accuracy 
at image resolutions as low as 32 × 32 pixels (Torralba, 
2009; Wolfe & Kuzmova, 2011) and they can discriminate 
them at resolutions as low as 2 × 2 pixels (Searston et al., 
2019).  At these low image resolutions, the finer details 
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vanish, leaving behind a global summary of the image as 
the basis for category judgments.

This ability to glean the global structure of a visual 
scene from low-dimensional information allows for 
rapid and accurate categorization, freeing up cognitive 
resources for detailed analysis of finer elements within 
the scene. The ability to rapidly extract global informa-
tion and make accurate inferences based on limited vis-
ual input is a hallmark of human visual cognition (Brady, 
Stormer, & Alvarez, 2016; Oliva & Torralba, 2006). This 
rapid processing of global information is not only effi-
cient but also serves to guide subsequent attention to rel-
evant local features (Wolfe et al., 2011).

The processing of global and local information can also 
be likened to holistic and part-based mechanisms in face 
recognition. While global processing prioritizes an over-
arching summary of the visual input, akin to holistic pro-
cessing, local processing focuses on analyzing finer, more 
granular features, akin to part-based strategies. Indeed, 
research in face recognition suggests that both holis-
tic and part-based processing may contribute to supe-
rior visual recognition (Belanova et  al., 2021). However, 
recent findings suggest that the contribution of holistic 
and part-based processing may differ across tasks and 
stages of processing. For example, while holistic process-
ing is generally more dominant during recognition, part-
based processing may play a crucial role during learning, 
particularly for unfamiliar faces (Leong, Estudillo, & 
Ismail, 2023; Chua & Gauthier, 2020). Additionally, indi-
vidual differences in recognition ability are linked to both 
mechanisms, but not uniformly: some individuals rely 
more heavily on holistic processing, while others demon-
strate superior featural analysis, reflecting distinct under-
lying strategies rather than a single holistic mechanism 
(Rezlescu et  al., 2017). These findings show that global/
holistic and local/part-based processing each contrib-
ute differently depending on the context—including the 
type of task, familiarity with the stimuli, and individual 
expertise.

Our capacity to extract global visual structure is criti-
cal not just for recognizing faces or categorizing natural 
scenes, but also for expert decision-making in domains 
like radiology and fingerprint examination. Radiologists 
can swiftly diagnose abnormalities in medical images at 
a momentary glance (Brennan et al., 2018; Nodine et al., 
1999). Expert chess players can rapidly extract meaning-
ful patterns from complex board configurations (Gobet 
& Simon, 1996; Palmeri, Wong, & Gauthier, 2004). Good 
tennis players can anticipate opponents’ movements 
well before they occur (Williams et  al., 2002). And sea-
soned birdwatchers can efficiently identify different spe-
cies in less than half a second (Tanaka & Curran, 2001). 
Some of these expert abilities are said to rely on holistic 

processing, where the configuration of features is pro-
cessed as an integrated whole rather than as isolated 
parts (Tanaka & Farah, 1993; Gauthier & Tarr, 2002). 
Across domains, these feats of expertise demonstrate 
that a well-developed sensitivity to the global structure 
of a scene or an image is crucial for supporting accurate 
visual inferences in a variety of contexts. In the present 
study, we extend this work into the domain of fingerprint 
examination. We explore the role of global processing 
as a function of expertise by investigating the extent to 
which novices and experts can accurately distinguish fin-
gerprints without the minutiae.

Expertise in fingerprint examination
While media portray fingerprint examination as com-
puter-driven, it fundamentally relies on human expertise. 
Expert examiners manually compare latent fingerprints 
found at crime scenes to prints in police databases. This 
comparison process is complicated by distortions and 
variations in latent impressions and the increasing simi-
larity of prints retrieved by database searches as com-
puter algorithms improve (Dror & Mnookin, 2010), and 
the potential for contextual information to introduce bias 
in expert judgments (Kukucka & Dror, 2023). The diverse 
range of cases means that examiners rarely build famili-
arity with any one individual’s prints. Despite these chal-
lenges, fingerprint experts exhibit remarkable accuracy in 
their comparison decisions, even under less-than-ideal 
conditions (Growns et al., 2023; Tangen et al., 2011; Tan-
gen et al., 2020; Ulery et al., 2011).

The primary task of a fingerprint examiner is to infer 
whether two prints belong to the same finger or dif-
ferent fingers. This task is often described as a careful 
comparison of local features in the prints called ‘minu-
tiae’—and experts outperform novices at searching and 
locating specific features in prints (Hicklin et  al., 2019; 
Robson et  al., 2021). In contrast to expectations from 
face recognition research, Vogelsang, Palmeri, and Busey 
(2017) found only weak evidence for holistic processing 
by experts using a composite fingerprint task adapted 
from the face recognition literature which suggests that 
local processing strategies may play a large role. However, 
experts can also reliably distinguish prints even when the 
minutiae are obscured or no longer available. Fingerprint 
experts can accurately identify prints clouded in visual 
noise (Thompson & Tangen, 2014) and presented after 
a time delay (Corbett et  al., 2024). Studies using eye-
tracking methods have shown that experts make smaller, 
more precise eye movements when viewing prints com-
pared to novices (Busey & Vanderkolk, 2005; Busey et al., 
2011), suggesting they are more adept at extracting global 
‘holistic’ information without exhaustively searching for 
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local features across various regions of a print (Busey & 
Parada, 2010).

Evidence suggests that fingerprint experts are sensi-
tive to the global information distributed across dif-
ferent fingers of the same individual. Normally, these 
experts compare prints at the level of the individual fin-
ger: their task is to distinguish different impressions left 
by the same finger of the same individual (e.g., Smith’s 
right thumb) and different impressions left by differ-
ent individuals. Searston and Tangen (2017c), however, 
tested whether fingerprint experts can also discriminate 
prints at the individual person level. In other words, 
how well can these experts distinguish between differ-
ent impressions left by different fingers of the same per-
son (e.g., prints from Smith’s right thumb, index, ring, 
middle or little fingers) and different impressions left 
by different fingers of different people. In this task, it 
is impossible to rely on a careful comparison of minu-
tiae in each print because these local features and pat-
terns vary across an individual’s fingers. Despite this 
variability, even novices performed above chance at 
distinguishing prints that were different impressions 
from different fingers of the same individual—and the 
experts were considerably more accurate than the nov-
ices. This example illustrates that there is also global 
structure distributed across an individual’s fingerprints 
and that experts have a heightened sensitivity to this 
global information relative to novices.

In casework, fingerprint experts are trained to con-
duct a detailed analysis of the minutiae in the latent 
print before comparing it to prints from known indi-
viduals (Robson et al., 2020, 2021), with some employ-
ing bias-reduction techniques like linear sequential 
unmasking to enhance decision accuracy (Dror et  al., 
2015). However, the above demonstrations suggest that 
fingerprint experts are not merely relying on local fea-
ture comparisons but are leveraging both global and 
local processing to achieve their remarkable accuracy. 
This sensitivity to global structure in prints likely comes 
about with extensive exposure to prints (Kellman & 
Garrigan, 2009; Richler & Palmeri, 2014). Longitudi-
nal evidence shows that fingerprint trainees get better 
at discriminating fingerprints and fingerprint patterns 
as they progress through their on-the-job training to 
become experts (Searston & Tangen, 2017b, 2017c). 
More recent experimental evidence has also shown 
that statistical summary information can facilitate per-
ceptual learning in fingerprint examination (Growns 
et  al., 2022, 2023). This research suggests that experts 
are drawing on a mental repository of similar prints 
(Brooks, 1978; Medin & Schaffer, 1978) that allows 
them to build a richer global representation prior to 
feature segmentation (Oliva & Torralba, 2006)—and 

that this enriched global impression supports more effi-
cient analysis of the finer details.

Inferring missing details in fingerprints
A heightened sensitivity to global information may 
also facilitate accurate inferences based on incomplete 
data. Training to infer missing features from a category 
instance can result in better transfer to novel situations 
compared with standard training methods (Jones & 
Ross, 2011). Deducing that a bee with pale opalescent 
blue stripes on its abdomen must have a burrow made 
of soft stone is an inference that emphasizes common-
alities among category members. Conversely, inferring 
the category label “blue banded bee” from the exemplar 
emphasizes information distinguishing between catego-
ries (Chin-Parker & Ross, 2004). This sensitivity to visual 
structure helps experts make accurate inferences even 
with imperfect visual information—crucial in the context 
of fingerprint examination.

Given the varied conditions under which fingerprint 
examiners work, they often need to make decisions based 
on incomplete information. Fingerprint experts some-
times work with pristine, fully rolled prints captured by a 
computerized fingerprint scanner. At other times, prints 
can be highly distorted or incomplete. Variation in sur-
face, pressure, movement, skin residue, and even the 
compounds used to lift or capture a crime-scene (latent) 
print—such as phosphorescent dye—can affect how a 
print appears and what aspects of it might be missing. 
Imagine cradling a glass in your hand and loosening and 
tightening your grip. If you were to try this exercise, you 
may notice how different parts of each finger make con-
tact with the glass, and that as you adjust your grip, your 
skin spreads and folds across the surface. An examiner’s 
appreciation for the gist of a print, and the redundancies 
dispersed across it, might help them infer what might be 
missing in these challenging circumstances.

The present experiments
The present experiments test the hypothesis that finger-
print experts can leverage global information to infer 
missing details in highly distorted or incomplete latent 
prints more effectively than novices. We designed two 
experiments to limit participants’ reliance on minutiae 
when comparing prints:

1.	 In Experiment 1, participants engage in a Fill-in-the-
Fragment task (Fig.  1). They must infer the visual 
detail missing from a blank space cropped from a 
print, relying solely on the surrounding visual context 
of the print. This setup assesses their ability to use 
global context to reconstruct incomplete prints.
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2.	 Experiment 2 employs a Fragment Comparison task. 
Participants compare small windows or ‘fragments’ 
of visual detail sampled from different regions (of 
different impressions) of the same finger, or differ-
ent regions of a different finger altogether. Here, they 
must infer the missing visual surrounds of each frag-
ment, further testing their capacity to use global vis-
ual patterns for accurate decisions.

By comparing the performance of experts and novices 
across these visual inference tasks, this research aims to 
understand how fingerprint experts use global informa-
tion to make accurate decisions. We aim to determine 
whether their expertise enables them to compensate for 
missing or obscured minutiae by relying on global visual 

patterns. This investigation builds on previous studies 
exploring the role of global or holistic processing in face 
and scene recognition and seeks to isolate the role of 
global information in fingerprint examination.

Experiment 1: Fill in the Fragment
In Experiment 1, we tested how well people can infer 
missing sections from a fingerprint and compared the 
performance of expert fingerprint examiners to that of 
novices. Building on Searston and Tangen’s (2017c) find-
ings—which demonstrated that fingerprint experts can 
extract global information distributed across different fin-
gers of the same person—we explored whether sensitivity 
to such distributed information would enable experts to 
infer missing visual details from a print. Specifically, we 

Fig. 1  Fill-in-the-Fragment Task. The top panel shows ten fingerprints from a single individual (two hands, five fingers each) with circular 
patches highlighted in orange (target) or cyan (distractors). The bottom panel illustrates a single trial of the task. Participants were presented 
with a fingerprint containing a circular blank patch and asked to select which of the seven fragments below correctly fills the hole. The fragments 
include one target (matching the blank area) and six distractors, all extracted from different fingerprints of the same individual
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examined whether individuals could deduce the correct 
section of ridge detail missing from a print based on sur-
rounding information—ridge flow, thickness, and friction 
ridge characteristics dispersed across a fingerprint.

To investigate this, we recruited a group of fingerprint 
experts and an age- and gender-matched group of fin-
gerprint novices to complete a Fill-in-the-Fragment task. 
Participants had to infer the missing fragment of a fin-
gerprint based on the surrounding context. The critical 
question was: can people use the global structure or style 
of a person’s fingerprint to accurately infer a small piece 
of missing friction ridge skin detail?

Method
Participants
Sensitivity analysis
We conducted a sensitivity analysis based on an esti-
mated sample of 30 experts and 30 novices. Thirty 
matched expert-novice pairs, each completing 48 trials 
(totaling 2,880 observations), provided sufficient power 
(1 − β = 0.82) to detect a moderate difference between 
experts and novices (Cohen’s d = 0.45). We planned to 
collect data from as many experts as possible and then 
test an equal number of novices—as it is often difficult to 
recruit experts due to their busy schedules.

Expert group
We collected data from 44 expert fingerprint examin-
ers (25 females, 19 males; median age = 42; min = 29; 
max = 60) from Australian state and federal police agen-
cies. All experts were qualified, court-practicing finger-
print examiners. These experts completed the two tasks 
reported in this paper—along with seven other unrelated 
experimental tasks—in a random order over one or two 
days during breaks in their casework. The other tasks 
were unrelated to the research question addressed in this 
manuscript and have or will be reported elsewhere (e.g., 
Corbett et al., 2024; Robson et al., 2021, 2024). The exam-
iners had an average of 15 years of experience examining 
fingerprints (min = 5, max = 40).

Novice group
Novice participants—with no formal experience in fin-
gerprint examination—were recruited from The Uni-
versity of Adelaide, The University of Queensland, and 
Murdoch University communities. Forty-four novices (25 
females, 19 males; median age = 43; min = 26; max = 62) 
participated for cash payment (AUD$20) and were 
‘yoked’ or matched to experts based on age (± 2  years), 
gender, and level of education. Each expert was paired 
with a novice counterpart who had the same age, gen-
der, and level of education. Additionally, the novice 

participants were incentivized to perform to the best 
of their ability by offered an additional cash payment 
(AUD$10) if they could exceed the performance of their 
expert counterpart.

Design
Task  In the ‘Fill-in-the-Fragment’ task, participants 
were presented with a fingerprint in the center of a com-
puter screen containing a 132 × 132 pixel blank spot (see 
Fig. 1). The aim was to identify the fragment that correctly 
filled this blank spot from seven fragments displayed at 
the bottom of the screen. Each trial included one target 
fragment that corresponded with the blank spot and six 
distractor fragments from different fingerprints. The tar-
get fragment was randomly positioned on each trial—
with a long-run probability of 1 in 7 (0.143) for guessing 
correctly.

Pilot  We chose seven fragments per trial to maximize 
variance between novices and experts. This decision was 
based on a pilot experiment with novices (N = 8) in which 
we tested the difficulty of the task with three, five, seven, 
or nine fragments. Novices correctly selected the target 
73% of the time with three options, 59% with five options, 
45% with seven options, and 42% with nine options. The 
task proved challenging with seven or more fragments—
as novices made errors on more than half of the trials.

Trial sequencing  Each participant completed 48 unique 
trials, each featuring a new fingerprint and correspond-
ing fragments. Novices were presented with the same trial 
sequences as their expert counterpart, ensuring identical 
stimuli and order for both groups. This matched-pairs 
design and method of yoking trial sequences between 
experts and novices ensures that any observed differences 
were most likely due to genuine differences in perfor-
mance rather than variations in the stimuli.

Stimuli  All fingerprints were sourced from the National 
Institute of Science and Technology (NIST) Special Data-
base 300 ‘rolled’ set (Fiumara, 1993). This set—originally 
donated by the United States Federal Bureau of Investiga-
tion—contains 8,871 prints collected in operational polic-
ing contexts, preserving their natural variation in quality, 
completeness, and contextual detail. For this experiment, 
we used a subset of 1,200 prints, including 10 prints of 
each finger type (e.g., thumb, index, middle, ring, and lit-
tle fingers from both hands) from 120 individuals.

We standardized the width of all prints to 640 pixels 
while allowing the height to vary naturally, preserving 
the original aspect ratio of each print. From each of these 
standardized prints, a 132 × 132 pixel circular patch of 
friction ridge detail was removed, creating a set of 1,200 
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prints with missing fragments and 1,200 corresponding 
fingerprint fragments for targets and distractors. This 
fragment size represents approximately 4.25% of the 
total area of a print with dimensions of 640 × 640 pixels. 
All other original details in the prints—including natu-
ral variation in contrast, hue, and luminance—were left 
intact.

To ensure the task presented a challenge to partici-
pants, distractor fragments were extracted from differ-
ent fingers of the same person, ensuring they were highly 
similar in overall pattern but different in detail to the tar-
get (see Searston & Tangen, 2017b). Each trial involved 
48 fingerprints and their corresponding fragments, ran-
domly sampled from one of 120 people. The fingerprint 
and target fragment were randomly selected from one 
of the person’s ten finger types (thumb, index, middle, 
ring, or little finger from either hand), while the distrac-
tor fragments were randomly selected from six of the 
remaining nine finger types.

The location of the missing fragment in the print var-
ied from trial to trial, but fragments were systematically 
extracted by eye from similar parts of the finger to maxi-
mize target-distractor similarity on any given trial. For 
instance, if the target fragment was taken from the top 
left part of Smith’s left thumb, the distractors were taken 
from the top left parts of Smith’s other fingers that most 
closely resembled the target. This procedure ensured that 
distinctive minutiae between individual prints could not 
be used to distinguish the fragments.

Procedure  The task was presented to participants on a 
13-inch MacBook computer. Participants first watched an 
instructional video explaining the task, including exam-
ples (see instructional video < https://​youtu.​be/​YpStL-​
dAtS0 >). Following this, they viewed a total of 48 prints 
with blank spots, one at a time in sequence. Each trial 
displayed seven corresponding fragments (one target 
and six distractors) lined up below the fingerprint. Par-
ticipants made their choice by clicking on the fragment 
they believed filled in the blank or missing detail in the 
print. Immediate feedback was provided—an audible 
tone and a green checkmark for correct answers, or a red 
“✕” for incorrect answers. The fingerprint and fragments 
remained on screen until the participant clicked on one of 
the seven fragments and during the 500-ms feedback win-
dow. There was a 500-ms interval between their response 
and the next trial. If participants took longer than 15 s to 
respond, a text prompt appeared during the inter-trial 
interval, stating: “Please try to make your choice in less 
than 15  s.” We allowed participants’ response times to 
vary naturally within this deadline to explore the dynam-
ics of the decision-making process.

Hypotheses  Humans have an exceptional ability to rec-
ognize complex scenes with minimal detail (Navon, 1977; 
Oliva & Torralba, 2006; Searston et  al., 2019). Applying 
this research to the current fill-in-the-fragment task, we 
hypothesized that both novices and experts would be 
able to identify the missing fragment by comparing global 
image properties with above-chance accuracy. However, 
given extensive research demonstrating experts’ superior 
ability to discriminate prints compared to novices—even 
under conditions with limited time and information (e.g., 
Searston & Tangen, 2017a; Thompson & Tangen, 2014)—
we expected that experts would outperform novices. That 
is, while novices were expected to perform above chance, 
the performance of experts was expected to be signifi-
cantly higher due to their vast exposure to a wide variety 
of prints and how they tend to look and vary.

Results
The full dataset and accompanying analysis script (an R 
Notebook) for this experiment are available on the Open 
Science Framework at: https://​osf.​io/​ndxpc.

Proportion correct
Experts relative to novices
Expert fingerprint examiners demonstrated a higher 
proportion of correct responses (M = 0.508, SD = 0.122) 
compared to novices (M = 0.450, SD = 0.126; see Fig.  2). 
A paired t-test confirmed this difference, t(43) = 2.295, 
p = 0.027—indicating that experts performed significantly 
better than novices. The mean difference was 0.058, with 
a 95% confidence interval ranging from 0.007 to 0.109, 
suggesting a moderate (Cohen’s d = 0.47) effect size.

Performance relative to chance
To further assess performance, we conducted one-sam-
ple t-tests comparing the proportion of correct responses 
of both experts and novices against the chance level of 
0.143 (corresponding to a 1 in 7 probability of guessing 
the correct fragment). Expert performance was signifi-
cantly above chance, with a mean proportion correct of 
0.508 (SD = 0.122), t(43) = 19.988, p < 001. The 95% con-
fidence interval for expert performance was between 
0.470 and 0.545. Similarly, novice performance was also 
significantly above chance, with a mean proportion cor-
rect of 0.450 (SD = 0.126), t(43) = 16.280, p < 001. The 95% 
confidence interval for novice performance was between 
0.411 and 0.488. These results indicate large effect sizes 
for both experts (Cohen’s d = 3.01) and novices (Cohen’s 
d = 2.45) when compared to chance.

Response times
Response time analysis showed that experts had a mean 
response time of 11.49 s (SD = 4.19), while novices had a 

https://youtu.be/YpStL-dAtS0
https://youtu.be/YpStL-dAtS0
https://osf.io/ndxpc
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mean response time of 11.97 s (SD = 5.19). A paired t-test 
comparing the response times between experts and nov-
ices revealed no significant difference, t(43) = − 0.431, 
p = 0.668. The mean difference in response times was 
− 0.476  s, with a 95% confidence interval ranging from 
− 2.700 to 1.748 s. These results suggest that there was no 
significant difference in response times between experts 
and novices—indicating that both groups took a similar 
amount of time to respond on a given trial.

Experiment 2: fragment comparison
In Experiment 1, participants could reliably identify 
missing sections of ridge detail in a fingerprint using 
the surrounding context of the print. Experts were also 
more accurate at identifying these missing fragments 
compared with novices. Since there was no overlapping 
local information between the fragments and the prints, 
these findings suggest that participants were using the 
surrounding visual context of the print to infer the miss-
ing local information. However, in this task, the frag-
ments were extracted from the exact same image as the 
corresponding print. Since participants could mentally 
trace the ridges from the surrounding context to locate 
the target, above-chance performance could arise from 

processing local rather than global information. Experi-
ment 2 addresses this limitation by testing whether 
experts and novices can use global information when 
local tracing is impossible.

In practice, fingerprint examiners do not ‘match’ 
images of prints per se; they distinguish between differ-
ent instances or impressions made by the same finger and 
those made by different fingers. Fingerprint impressions 
made by the same finger can vary due to factors such 
as surface structure, perspiration, contaminants on the 
skin, skin flexibility, and pressure and movement during 
impression-making. Likewise, fingerprint impressions 
made by different fingers can look quite similar, due to 
the use of computer algorithms to speed up the search 
for comparison prints in police databases. As such, fin-
gerprint experts do not match images, they match differ-
ent impressions made by the same finger.

In Experiment 2, we tested whether participants 
could infer the identity of a fingerprint based solely on 
global information in a task where the corresponding 
fragments are taken from two different impressions of 
the same finger. Critically, these fragments were sam-
pled from different local regions of the finger in each 
impression—such that they shared no overlapping 

Fig. 2  Proportion correct scores for expert and novice participants on the Fill-in-the-Blank task. Each point represents an individual participant’s 
performance. Red diamonds and error bars indicate the mean proportion correct and standard deviation for each group. Purple lines connect 
matched expert-novice pairs. Experts are coded as purple and novices as yellow-green. The dashed line indicates chance performance
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features of friction ridge skin (see Fig.  3 for an exam-
ple). Whereas participants in Experiment 1 inferred 
what fragment was missing given the surrounding 
visual context of a single impression, in Experiment 
2 they needed to infer the surrounding visual context 
from the fragment of a different impression that was 
sampled from a different region of the finger. Mental 
tracing is impossible in this task for two reasons. First, 
the fragments come from different regions of the fin-
ger that share no overlapping ridge detail. Second, since 
the fragments are taken from different impressions at 
different times, local details can vary due to changes in 
pressure and other distortions during deposition.

Previous research has shown that fingerprint experts 
can discriminate same-source and different-source 

fingerprints with high accuracy (Tangen et  al., 2011; 
Thompson et al., 2013a). In those studies, participants 
were able to compare overlapping features between two 
fingerprint impressions to decide if they were made by 
the same person or finger. In this current experiment, 
participants were given a small fragment of a finger-
print (132 × 132 pixels) and asked to identify which 
fragment—out of a lineup of four other fragments—
came from the same finger. All but one of these four 
fragments were sampled from different regions of dif-
ferent fingers of the same individual. The correspond-
ing fragment was sampled from a different impression 
and a different region of the same finger. We refer to 
this as the Fragment Comparison task.

Fig. 3  Fragment Comparison Task. The top panel displays fingerprints from all ten fingers of an individual (two hands, five fingers each). Circular 
patches highlighted in orange (target) and cyan (distractors) indicate potential sampling areas for fragments. Not depicted is that the probe 
and target fragments were always extracted from different impressions of the same finger (different tenprint cards), while distractors came 
from different fingers from different tenprint cards of the same individual. The bottom panel illustrates a single trial of the task. Participants were 
presented with a probe fragment (top) and asked to identify which of the four fragments below came from a different impression of the same 
finger. This task tests participants’ ability to discriminate fingerprints using global structural information without relying on specific overlapping 
minutiae
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We examined whether people could discriminate 
between two types of fragments: those sampled from dif-
ferent regions of different impressions of the same finger, 
and those sampled from different regions of different 
impressions of different fingers. This task forces partici-
pants to rely on just a small piece of friction ridge skin to 
infer the global structure or style of a person’s fingerprint.

Method
Participants, design and procedure
The same participants from Experiment 1—44 experts 
and 44 age- and gender-matched novices—completed the 
Fragment Comparison task in Experiment 2. The general 
procedure was identical to that of Experiment 1. Partici-
pants viewed an instructional video (see instructional 
video < https://​youtu.​be/​HdFf2​pzOR2Y >) before com-
pleting 48 trials of the Fragment Comparison task.

On each trial, a probe fragment from a new print was 
presented in the center of the computer screen (see 
Fig.  3). The probe was presented along with four other 
fragments at the bottom of the screen. One of these four 
fragments came from the same finger as the probe (“tar-
get”). The probe and the target fragments were extracted 
from different parts of different prints left by the same 
finger. The other three fragments in the lineup were from 
different fingers of the same individual (“distractors”). 
The target fragment was randomly positioned among 
the fragment lineup on each trial, and participants were 
asked to select the corresponding fragment each time. 
As in Experiment 1, corrective feedback and a prompt 
to respond within 15 s were provided on each trial with 
extended response times.

The distractors and targets were extracted from differ-
ent fingers of the same person, and from the same part of 
the print on each trial. This procedure further increased 
the difficulty of the task—as the targets and distractors 
shared similarities based on the common visual structure 
present across an individual’s prints (e.g., see Searston 
& Tangen, 2017c). However, it also enabled us to isolate 
participants’ ability to identify individual fingers based 
on global image properties. We prepared trial sequences 
using different randomization seeds for each of the 
44 expert-novice pairs, mirroring the same matched-
pairs yoked sequence design as in Experiment 1. Each 
pair completed an identical trial sequence—ensuring 
they were perfectly matched on stimuli and order of 
presentation.

Stimuli
The materials for Experiment 2 were sourced from the 
NIST Special Database 300 ‘plain’ and ‘rolled’ sets (Fiu-
mara, 1993). These sets include fingerprints taken from 
the same individuals at different times—encompassing 

2 × fingerprints × 10 fingers from each donor. We selected 
four rolled prints and one plain print (or “slap”) from 
each of 200 donors, resulting in a total of 1,000 prints. 
The rolled prints were from four different fingers of the 
same individual donor, and the plain print was randomly 
chosen from one of these four fingers.

From each print, we extracted two fragments: one from 
the top half and one from the bottom half of the finger. 
This process yielded 1,600 rolled fragments for targets 
and distractors and 400 plain fragments for probes. Each 
fragment was manually cropped to a standardized size 
of 132 × 132 pixels to ensure that targets and distractors 
were selected from similar areas of the prints without 
overlapping with the probe.

The probe fragments were randomly chosen from 
either the top or bottom half of the plain prints. The four 
other fragments—including the target and three distrac-
tors—were sampled from the opposite part of the cor-
responding rolled prints from the same person. This 
method ensured that the probes were always taken from 
different parts of the finger than the target and distractor 
fragments. The friction ridge skin detailed in the probe 
fragment did not correspond with those in the target or 
distractors. Therefore, the probes and target fragments 
shared no specific minutiae in common. The question 
is whether the common global characteristics shared 
between the probe and the target fragments—such as 
general patterning, direction of ridge flow, ridge thick-
ness, the individual’s general tendencies to apply more or 
less pressure—are sufficient for identifying prints left by 
the same finger.

Hypotheses
Building on the results of Experiment 1—where experts 
demonstrated superior ability to infer missing ridge 
details from fingerprints based on global image proper-
ties (e.g., ridge flow and patterning)—we hypothesized 
that in Experiment 2, both novices and experts would be 
able to identify matching fragments using similar global 
cues. However, we expected that experts would out-
perform novices due to their extensive experience with 
highly variable and impoverished latent impressions. 
Specifically, we predicted that novices would perform 
above chance, but experts would achieve significantly 
higher accuracy due to their exposure to fingerprint pat-
terns and relationships between features.

Results
The data analysis plan and workflow was the same as 
Experiment 1, and the data and script are available at: 
https://​osf.​io/​ndxpc.

https://youtu.be/HdFf2pzOR2Y
https://osf.io/ndxpc
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Proportion correct
Experts relative to novices
Expert fingerprint examiners demonstrated a higher 
proportion of correct responses (M = 0.358, SD = 0.093) 
compared to novices (M = 0.305, SD = 0.073; see Fig.  4). 
A paired t-test confirmed this difference, t(43) = 2.775, 
p = 0.008—indicating that experts performed significantly 
better than novices. The mean difference was 0.054, with 
a 95% confidence interval ranging from 0.015 to 0.092, 
suggesting a moderate effect size (Cohen’s d = 0.64).

Performance relative to chance
As in Experiment 1, we conducted one-sample t-tests 
comparing the proportion of correct responses of both 
experts and novices against the chance level of 0.25 (cor-
responding to a 1 in 4 probability of guessing the cor-
rect fragment). Expert performance was significantly 
above chance, with a mean proportion correct of 0.358 
(SD = 0.093), t(43) = 15.65, p < 0.001. The 95% confidence 
interval for expert performance was between 0.330 and 
0.387. Similarly, novice performance was also signifi-
cantly above chance, with a mean proportion correct 
of 0.305 (SD = 0.073), t(43) = 14.955, p < 0.001. The 95% 

confidence interval for novice performance was between 
0.283 and 0.327. These results indicate large effect sizes 
for both experts (Cohen’s d = 2.36) and novices (Cohen’s 
d = 2.26) when compared to chance.

Response times
Response time data showed that experts had a mean 
response time of 8.34  s (SD = 4.59) on the Fragment 
Task, while novices had a mean response time of 8.17  s 
(SD = 3.75). A paired t-test comparing the response times 
between experts and novices revealed no significant dif-
ference, t(43) = 0.173, p = 0.864. The mean difference in 
response times was 0.167 s, with a 95% confidence inter-
val ranging from − 1.785 to 2.119  s. These results sug-
gest that there was no significant difference in response 
times between experts and novices—indicating that both 
groups took a similar amount of time to respond on a 
given trial.

General discussion
We conducted two experiments examining how finger-
print experts and novices use global visual information 
to make accurate inferences about missing details in fin-
gerprints. Specifically, we aimed to determine whether 

Fig. 4  Proportion correct scores for expert and novice participants on the Fragment Comparison task. Each point represents an individual 
participant’s performance. Red diamonds and error bars indicate the mean proportion correct and standard deviation for each group. Purple lines 
connect matched expert-novice pairs. Experts are coded as purple and novices as yellow-green. The dashed line indicates chance performance
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experts, compared to novices, could more effectively use 
surrounding visual context to infer missing ridge detail 
in degraded or incomplete fingerprints. Our results 
show that while both groups can perform above chance, 
experts consistently outperform novices—demonstrating 
a heightened sensitivity to global image properties that 
enhances their ability to process incomplete or degraded 
prints.

In Experiment 1, participants could reliably identify 
missing sections of ridge detail by using the surrounding 
context, with experts showing significantly higher accu-
racy than novices. This supports the idea that experts 
have developed a refined sensitivity to the overall struc-
ture and pattern of fingerprints through extensive expe-
rience. This refined ability to quickly glean the gist of a 
print provides a foundation for accurate inferences about 
missing details. Previous research supports this inter-
pretation, as experts in various domains demonstrate an 
ability to leverage global visual information for accurate 
and rapid decision-making (Brennan et al., 2018; Nodine 
et al., 1999; Oliva & Torralba, 2006). This ability to inte-
grate global information aligns with mechanisms of holis-
tic processing described in the face recognition literature, 
where the spatial configuration of features is perceived as 
an integrated whole, facilitating rapid and accurate deci-
sions (Belanova et al., 2021; Chua & Gauthier, 2020).

Experiment 2 extended these findings by testing 
whether participants could discriminate fingerprint frag-
ments sampled from different impressions of the same 
finger. Critically, these fragments were also sampled 
from different regions of the different impressions—
such that they shared no overlapping local features of 
friction ridge skin, unlike a typical fingerprint matching 
task. Experts again outperformed novices, demonstrat-
ing their superior ability to use global image properties 
to draw inferences even when information is limited, and 
local minutiae are unavailable. This further supports the 
hypothesis that experts rely on a rich mental repository 
of fingerprint patterns, enabling them to build a global 
representation of a print that aids in accurate comparison 
decisions (Brooks, 1978; Medin & Schaffer, 1978).

While performance was significantly above chance in 
both experiments, it was generally quite poor relative to 
other fingerprint matching experiments (e.g., Thomp-
son, et  al., 2013b). This outcome is not surprising given 
the challenging nature of the task—the fragments were 
small (132 × 132 pixels), and the distractors were highly 
similar to the target fragments, all sampled from differ-
ent regions of the same individual’s fingerprints. How-
ever, the generally poor performance indicates that more 
information and time to conduct a detailed analysis of 
minutiae is also critical to making accurate comparison 
decisions (Robson et al., 2021). These findings align with 

the idea that fingerprint experts heavily rely on local or 
part-based processing, particularly when local minutiae 
provide diagnostic features (Vogelsang, Palmeri, & Busey, 
2017). However, the persistence of expert-novice differ-
ences in the absence of local diagnostic information sug-
gests that experts may be able to switch between global 
(holistic) and local (part-based) mechanisms depending 
on the visual context of the case. Much like scene and 
face recognition, holistic impressions of fingerprints may 
guide attention to key local features, enabling experts to 
balance efficiency and accuracy in their interpretation of 
visual evidence.

In general, our findings complement previous research 
showing that perceptual expertise involves the ability 
to quickly and accurately process global visual informa-
tion (Busey & Vanderkolk, 2005; Thompson & Tangen, 
2014;  Thompson et  al., 2014). We also add to existing 
research on scene and face recognition by demonstrat-
ing that a capacity to extract global visual information 
can support accurate decision-making in a complex vis-
ual comparison task. Our findings show that this ability 
is not limited to natural scenes and faces but extends to 
the specialized expert domain of fingerprint examina-
tion—where examiners must often make decisions based 
on incomplete or degraded prints. This insight is relevant 
to a range of contexts where information is compro-
mised, such as when radiologists detect abnormalities in 
low-resolution medical images (Boita et al., 2021), police 
identify suspects from blurry surveillance footage (Bur-
ton et al., 1999), or remote sensing experts interpret sat-
ellite imagery when images are affected by atmospheric 
interference or resolution limitations (Ahn et  al., 2023). 
Future research may wish to explore the generality of our 
findings to such contexts.

The current experiments also extend on prior studies 
showing that fingerprint experts can infer the identity 
of a print by comparing impressions of different fingers 
from the same person (Searston & Tangen, 2017c). Per-
ceptual expertise in fingerprint examination appears not 
to rely solely on detecting and comparing local features 
(Hicklin et al., 2019; Robson et al., 2020, 2021), but also 
on information distributed across a print and between 
different prints. This idea is similar to other empirical 
findings suggesting that expertise in fingerprint examina-
tion rests partly on sensitivity to global or holistic infor-
mation (Busey & Vanderkolk, 2005; Busey & Parada, 
2009; Thompson & Tangen, 2014). For example, Thomp-
son and Tangen (2014) showed that fingerprint experts 
can accurately match prints clouded in noise or prints 
presented only very briefly. A careful comparison of local 
features cannot explain these expert-novice differences.

Moreover, our research suggests that while nov-
ices can perform above chance in these tasks, expertise 
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substantially enhances the ability to use global visual 
information for accurate fingerprint comparison deci-
sions. This highlights the importance of experience and 
extensive exposure to a wide variety of prints in develop-
ing the perceptual skills needed for expert performance 
(Searston & Tangen, 2017b, 2017c).

While our findings provide insight into the perceptual 
mechanisms underlying expertise in fingerprint examina-
tion, they should not be taken as evidence that examin-
ers rely on inferred details in operational settings. They 
should also not be used as a validation of expert perfor-
mance under challenging casework conditions in foren-
sic reporting or court testimony. Instead, these results 
highlight how developing a sensitivity to global image 
properties might support fingerprint comparison deci-
sions under controlled conditions, contributing to our 
general understanding of perceptual expertise. Future 
research should examine how global and local processing 
work together in expert decision-making, and test train-
ing methods that develop both abilities in novice analysts 
(see Growns et  al., 2022; Robson et  al., 2022; Searston 
et al., 2017b for examples of effective training). Addition-
ally, examining how experts integrate global and local 
information under different conditions could provide 
deeper insights into the cognitive mechanisms underly-
ing fingerprint expertise (Robson et al., 2021).

In conclusion, our study provides evidence that fin-
gerprint expertise involves leveraging global visual 
information alongside local minutiae. Under controlled 
experimental conditions, experts demonstrated superior 
ability to leverage global properties of fingerprints—such 
as ridge flow patterns—to make accurate comparisons. 
This heightened sensitivity to global patterns may guide 
experts’ attention to relevant local features, enabling 
more efficient and accurate detailed analysis. Although 
these results advance our theoretical understanding of 
perceptual expertise, we emphasize that they should not 
necessarily be used to inform or validate operational fin-
gerprint examination procedures. Rather, these findings 
further reveal the perceptual mechanisms that character-
ize expert performance in high-stakes visual comparison 
domains, from fingerprint examination to medical image 
interpretation. What emerges is a defining feature of per-
ceptual expertise: the ability to rapidly process global 
visual information while maintaining precise attention to 
local detail.
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