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Abstract
Decisions in forensic science are often binary. A firearms expert must decide whether a bullet was fired from a particular gun 
or not. A face comparison expert must decide whether a photograph matches a suspect or not. A fingerprint examiner must 
decide whether a crime scene fingerprint belongs to a suspect or not. Researchers who study these decisions have therefore 
quantified expert performance using measurement models derived largely from signal detection theory. Here we demonstrate 
that the design and measurement choices researchers make can have a dramatic effect on the conclusions drawn about the 
performance of forensic examiners. We introduce several performance models – proportion correct, diagnosticity ratio, and 
parametric and non-parametric signal detection measures – and apply them to forensic decisions. We use data from expert 
and novice fingerprint comparison decisions along with a resampling method to demonstrate how experimental results can 
change as a function of the task, case materials, and measurement model chosen. We also graphically show how response 
bias, prevalence, inconclusive responses, floor and ceiling effects, case sampling, and number of trials might affect one’s 
interpretation of expert performance in forensics. Finally, we discuss several considerations for experimental and diagnostic 
accuracy studies: (1) include an equal number of same-source and different-source trials; (2) record inconclusive responses 
separately from forced choices; (3) include a control comparison group; (4) counterbalance or randomly sample trials for 
each participant; and (5) present as many trials to participants as is practical.

Keywords Forensic science · Decision-making · Expertise  · Signal detection · Fingerprints · Proficiency tests · Forensic 
pattern matching

Forensic examiners observe crime scene trace evi-
dence – such as ballistic impressions, bitemarks, toolmarks, 
shoe prints, tire tracks, faces in CCTV footage, handwriting, 
and fingerprints – to determine the source of the trace. When 

examiners get these decisions right, their opinions can help 
law enforcement and the courts to convict the guilty and 
exonerate the innocent. When examiners get these decisions 
wrong, however, their evidence may contribute to wrongful 
convictions (Garrett & Neufeld, 2009) or failures to identify 
key suspects in criminal investigations. Landmark reports 
from the National Research Council (2009), the President’s 
Council of Advisors on Science and Technology (2016), 
and the American Association for the Advancement of Sci-
ence (2017) have put a spotlight on such errors, but there is 
disagreement about how best to quantify them (Albright, 
2021; 2022; Dror, 2020; Dror & Rosenthal, 2008; Koehler, 
2013, 2017). Here we offer a descriptive guide to measuring 
human performance in forensic pattern matching disciplines 
using the framework of signal detection theory.

This guide is intended for cognitive scientists and applied 
researchers who are interested in measuring human decision 
making in forensic pattern matching disciplines, for forensic 
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scientists who are interested in understanding how and why 
scientists measure performance in ways that may deviate 
from decision-making frameworks used in practice, and for 
others in the legal system interesting in making sense of 
scientific studies on human performance in forensic science. 
We begin this guide by introducing signal detection theory 
and explaining how it can be applied in the specific domain 
of fingerprint identification. We then introduce several meas-
urement models commonly used by cognitive scientists to 
quantify human performance: proportion correct, sensitivity, 
specificity, diagnosticity ratio, d prime (dʹ), A-prime (Aʹ) 
and empirical area under the curve (AUC). Following this, 
we use a resampling method to explore a range of common 
scenarios that arise when measuring performance in forensic 
pattern-matching domains and examine how these scenarios 
might affect measurement.

Of course, we are not the first to explore signal detection 
theory and we do not intend for this to be a comprehensive 
introduction to the topic. There are many texts that provide 
in-depth background to the framework, and we encour-
age interested readers to seek these out (e.g., Macmillan & 
Creelman, 2005). This paper is rather a demonstration of 
how signal detection models can be applied to real-world 
data and decisions, such as those made by forensic experts 
like fingerprint examiners. Within this context, we show that 
some models can drastically distort performance in certain 
scenarios and therefore the conclusions that are drawn. 
While this guide is intended to be more descriptive than 
prescriptive, we also offer practical considerations to some 
of the measurement problems arising within each scenario. 
These considerations can help guide the design and criti-
cal evaluation of studies of human performance in forensic 
pattern matching and other contexts where signal detection 
models are applied to real-world human performance data.

Signal detection in forensic science

People are frequently required to choose between two 
options when navigating the world: Is that person a threat 
or not? Am I pregnant or not? Is there a fire or not? These 
are binary decisions; the answer is either yes or no, and one’s 
judgment is either true or false. Many decisions in foren-
sic pattern matching are also dichotomous. For instance, a 
firearms expert must determine if a bullet was fired from a 
particular gun or not. An expert in facial comparison must 
determine whether a photograph matches a suspect or not. A 
fingerprint examiner must determine whether a fingerprint 
was left by a suspect or not. Forensic examiners may at times 
make non-binary judgments. For example, when analyzing 
blood spatter, an examiner may need to determine what type 
of weapon was used, where it made contact, and from what 
direction. These kinds of non-binary determinations are 

beyond the scope of this paper. Quantifying performance for 
binary decisions, however, is central to research on expert 
decision-making in forensic science: Are experts better than 
novices? How does procedure A compare to procedure B? 
How well is this examiner performing (Smith & Thomp-
son, 2019)? Signal detection is helpful for answering these 
questions.

There is a long history of using signal detection theory 
to evaluate performance (see Wixted, 2020). The core ideas 
were first encapsulated in 1860 (Fechner, 1860/1966) and 
formally theorized in the mid-20th century (Marcum, 1947; 
Peterson et al., 1954). Since then, it has been adopted by 
researchers in many different fields, including diagnostic 
medicine, weather forecasting, eyewitness identification, and 
personnel selection (Tanner & Swets, 1954; Green & Swets, 
1966; Swets, 1973; Swets, 1988; Swets et al, 1961; Wixted 
& Mickes, 2018). Phillips et al. (2001), to our knowledge, 
first proposed that signal detection theory be applied as a 
method for evaluating performance in the forensic sciences.

According to signal detection theory, performance is 
characterized by how well a system (an individual, group, 
technique, or department) can distinguish between what it 
seeks to find (the signal) against what it seeks to filter out 
(the noise). The ability to tell signal from noise is known as 
discriminability1. In radar operation, for instance, the signal 
consists of dots on a screen that represent enemy warships, 
whereas the noise consists of dots on a screen that represent 
everything else. In forensic pattern-matching, an examiner 
uses their physical senses to judge the degree of similarity 
between trace evidence and a reference sample (Albright, 
2021). They must decide whether the evidence originated 
from the same source or not, but there is also a correct 
answer to this question; the evidence either originated from 
the source in reality or it did not. Thus, signal is when the 
trace evidence and the reference sample come from the same 
source. Noise is when the evidence and the reference sample 
are not from the same source.

To measure how well a person can discriminate between 
signal and noise, their judgments can be compared with the 
ground truth. Although no one can know the truth of trace 
evidence in casework for certain, researchers can develop 
materials that have been obtained in a way that identifies the 
source. Controlled experiments allow researchers to gather 
data on how well people’s judgements align with ground 
truth. These data could be used for the scientific study of 
human performance, and for operational purposes such as 
diagnostic accuracy studies, proficiency tests, system-level 
black box studies, or ongoing management and quality 

1 Sometimes discriminability is referred to as sensitivity, but we will 
not use this term because it can be easily confused with another diag-
nostic accuracy known as sensitivity, which we introduce later.
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assurance. With this information, signal detection theory 
then offers a way of quantifying how well observers can 
detect whether trace evidence came from the same source 
as a reference sample.

A key benefit of a signal detection approach to measur-
ing human performance is that it allows one to distinguish 
between accuracy and response bias (Macmillan & Creel-
man, 1990, 2005). Accuracy refers to the number of correct 
decisions whereas response bias refers to favoring one out-
come over another, such as saying ‘signal’ more often than 
‘noise’. Imagine that 1% of the population has a particular 
disease. It is possible for a doctor to be 99% accurate in their 
diagnoses simply by saying that every patient does not have 
the disease. Likewise, if this doctor wanted to detect every 
person with the disease, they could simply say that every 
patient has the disease in which case they would correctly 
detect the disease 100% of the time. These are examples of 
extreme response bias, yet in both instances there is no indi-
cation that the doctor can effectively diagnose the disease; 
they have not demonstrated that they can discriminate signal 
from noise (the presence vs. absence of the disease). Accu-
racy is confounded by response bias. Using signal detection 
theory and discriminability resolves this issue. We return to 
this idea later.

Several studies of forensic performance have employed 
signal detection theory in their analyses (e.g., Busey et al., 
2022; Carter et al., 2020; Growns & Kukucka, 2021; Sear-
ston et al., 2016; Tangen et al. 2011; Thompson et al., 2013). 
More recently, Arkes and Koehler (2022), and Smith and 
Neal (2021), have also called for widespread adoption of sig-
nal detection theory in cognitive forensic research. However, 
even if many cognitive and forensic researchers do adopt 
this approach, the models, materials, and study design that 
they adopt will differ. To understand and communicate the 
value of forensic decisions, we need reproducible methods 
and robust models. In the next section, we run through how 
to measure performance with signal detection theory using a 
recent experiment that we conducted with fingerprint experts 
as an example.

Signal detection in fingerprint identification

Police departments employ fingerprint examiners to identify 
the source of fingerprints discovered at crime scenes. In this 
situation, the question is whether this fingerprint came from 
a specific suspect's finger or not. Throughout their careers, 
fingerprint examiners spend thousands of hours comparing 
and inspecting highly structured prints, and then present 
their findings to factfinders in criminal and civil cases. Prior 
research has shown that fingerprint examiners outperform 
novices on a range of perceptual and cognitive fingerprint 
tasks (Robson et al., 2021; Searston et al. 2016; Searston 

& Tangen, 2017a, 2017b; Tangen et al., 2011; Thompson 
et al., 2014; Thompson & Tangen, 2014). Here, we report 
the results of an original experiment comparing the latent 
fingerprint matching performance of qualified, court practic-
ing fingerprint experts to untrained novices using a Signal 
detection framework.

We conducted an experiment to investigate differences in 
fingerprint comparison performance between professional 
examiners and novices (preregistered project: https:// osf. io/ 
h4tjq/ wiki/ home). Participants were 44 fingerprint experts 
and 44 age, gender, and education-matched novices. We 
presented each participant with 24 pairs of prints collected 
from actual case files that were selected as being very dif-
ficult to distinguish. We also knew the ground truth of each 
fingerprint pair, i.e., whether or not they matched. Moreover, 
each yoked expert-novice pair was presented with a unique 
set of 12 same-source prints and 12 different-source prints 
that were randomly sampled from a larger pool of 48 fin-
gerprint pairs.

On a 12-point scale ranging from 1: sure different to 
12: sure same, we asked participants to rate the extent to 
which they thought the prints came from the same finger 
or different fingers. Every rating from 1 to 6 was therefore 
coded as a different-source judgment and ratings from 7 to 
12 were coded as a same-source judgment. Participants did 
not receive feedback on any trials. The task is illustrated 
in Fig. 1. Note that we are not necessarily recommending 
that forensic casework decisions be made using a confi-
dence rating such as this. These scales are, however, useful 
for cognitive scientists and applied researchers interested 
in measuring human perceptual performance, and how dif-
ferent groups or examiners may differ from one another in 
their abilities.

To establish how well the fingerprint examiners and nov-
ices performed on our latent fingerprint matching task, we 
can use a signal detection framework. There are four possi-
ble choice outcomes when each judgment is matched against 
the ground truth (see Fig. 2). An examiner can correctly say 
that two fingerprints from the same source are the “same” 
(a hit), or incorrectly say they are “different” (miss); the 
examiner can also correctly say that two prints from differ-
ent sources are “different” (correct rejection), or incorrectly 
say they are the “same” (false alarm). Performance may be 
judged in a variety of ways by adjusting how we tally up the 
number of decisions that fall into each of these categories.

A person whose judgments consist of only hits and cor-
rect rejections performs perfectly, whereas a poor performer 
frequently makes misses and false alarms. However, tell-
ing fingerprints apart, as with most real-world decisions, 
is not always clear cut. In a set of fingerprints with a large 
amount of variation, sometimes two prints deposited by the 
same finger can look very different from one another, and 
sometimes two prints from different fingers can appear very 

https://osf.io/h4tjq/wiki/home
https://osf.io/h4tjq/wiki/home
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similar. Same-source pairs and different-source pairs can be 
confused. This ambiguity can be represented probabilisti-
cally via two overlapping signal and noise distributions (see 
Fig. 3). The less an examiner confuses signal for noise, and 
noise for signal, the less overlap there is between these dis-
tributions, and the better the examiner’s performance.

Additionally, a person’s response bias, or criteria for mak-
ing decisions, can range from highly liberal (errs on the side of 
saying same-source) to highly conservative (errs on the side of 
saying different-source). A more conservative response bias 
produces more correct rejections, but also more misses. A more 
liberal criterion produces more hits, but also more false alarms. 

Fig. 1   An example trial from a fingerprint matching experiment. On 
each trial, participants were shown a crime-scene print on the left and 
a candidate print on the right. They were asked to rate their confi-

dence from 1 (sure different) to 12 (sure same). In some cases, the 
two prints were from the same person; in others, the prints were simi-
lar but originated from two different people

Fig. 2    When comparing fingerprints, there are four possible out-
comes. When an examiner decides whether two prints came from the 
same source or not, their decision is compared to the ground truth. 
If two prints originated from the same source and the examiner says 
“same”, the outcome is a hit, but if they say “different”, the outcome 
is a miss. In contrast, if two prints originated from different sources 

and a person says “different”, the outcome is a correct rejection, but if 
they say “same”, the outcome is a false alarm. If one uses a 12-point 
rating scale, decisions can be collapsed such that ratings from 1 to 6 
are coded as a different-source judgment and ratings from 7 to 12 are 
coded as a same-source judgment
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The overlap between signal and noise, and the response bias, 
determine the proportion of hits, misses, correct rejections, and 
false alarms of a human observer. In practice, the response bias 
(or decision threshold) that examiners adopt is consequential. 
For example, Thompson (2023) has demonstrated, using a Sig-
nal Detection model, that even small shifts in response bias can 
dramatically impact the likelihood of conviction or acquittal.

We can classify the decisions from the earlier fingerprint 
task into hits, correct rejections, misses, and false alarms for 
experts (Table 1) and novices (Table 2)2. Values in Tables 1 
and 2 show that both experts and novices performed better 
than chance, but both groups made mistakes on occasion. 
Experts generally fared better than novices, making fewer 
mistakes overall in terms of both misses and false alarms.

Delving deeper into Tables 1 and 2, we can express per-
formance with several diagnostic accuracies: Positive pre-
dictive value (PPV) is the likelihood that the fingerprints 
came from the same source when responded “same.” In our 
study, the PPV for the experts was 86%. The negative predic-
tive value (NPV), on the other hand, is the likelihood that 
the fingerprints came from different sources when responded 
“different.” In our study, the NPV for the experts was 80%. 
Predictive values can be useful to factfinders because they 
express the reliability of the decision made by a forensic 
practitioner (Mickes, 2015; Smith & Neal, 2021). However, 
predictive values in Table 1 do not necessarily reflect the 
operational decision-making ability of examiners because 
the task was completed under time constraints and with-
out the usual tools that fingerprint examiners have at their 
disposal, and outside a broader system. Moreover, for the 
purposes of determining human performance, sensitivity 
and specificity are more relevant. Unlike PPV and NPV, 
sensitivity and specificity are conditioned on ground truth 
rather than the examiner’s judgments, and hence describe 
their validity.

Together, sensitivity and specificity express how well a 
person or group can distinguish signal from noise. Sensitiv-
ity indicates how likely it is that a person will say “same 
source” when the fingerprints actually come from the same 
person. Specificity indicates how likely it is that a person 
will say “different source” when two fingerprints come from 
different people. When sensitivity is higher than specificity, 
the response bias is relatively liberal, whereas response bias 
is conservative when specificity is higher than sensitivity.

Tables 1 and 2 indicate the relatively comparable sensi-
tivity of experts (77%) and novices (70%), but specificity 
is higher for experts (88%) than for novices (48%). Expert 
examiners clearly perform better than novices overall, but 

examiners are also more careful than novices to declare 
that two fingerprints are from the same source. Sensitivity 
and specificity each provide only a partial picture of per-
formance. Consider a scenario in which experts had higher 
specificity than novices, but lower sensitivity. It would be 
unclear which group is better. Frequently, researchers will 
want to distil performance into a single value to unambigu-
ously compare individuals or groups.

Common measurement models 
of performance

The aim of this section is to introduce some commonly used 
single-value models of human performance. Rather than 
simply presenting data from the comparison task above to 
discuss these models, we used a resampling method to gen-
erate more stable estimates of performance and come to a 
better sense of the performance variation. We first obtained 
the means and standard deviations for the confidence ratings 
of the experts and novices for the same-source and differ-
ent-source trials in the fingerprint matching task described 
earlier. We then randomly sampled datapoints from beta 
distributions based on these means and standard deviations. 
Specifically, we sampled confidence ratings for 12 same-
source and 12 different-source trials for 44 hypothetical 
experts and 44 hypothetical novices 100 times over as if we 
had conducted the study many times. In Fig. 4, we present 
the data for proportion correct, diagnosticity ratio, dʹ, Aʹ, 
empirical AUC. The rainclouds represent the distribution of 
scores across the 100 resampled experiments.

Proportion correct

Perhaps the most used measure of performance is propor-
tion correct (or percent correct), which is a tally of the total 
number of hits and correct rejections divided by the total 
number of trials. Several forensic expertise studies have used 
proportion correct as a measure of ability (Bird et al., 2010; 
Searston & Tangen, 2017a; Tangen et al., 2011; Thompson 
& Tangen, 2014; White & Dunn et al., 2015). Proportion 
correct provides an intuitive sense of performance by show-
ing how many times a person answered correctly. As seen 
in Tables 1 and 2, experts (83%) have a higher proportion 
correct than novices (59%) on the fingerprint discrimina-
tion task. Experts were incorrect on 17% of trials whereas 
novices were incorrect on 41% of the trials. Figure 4A also 
shows the distribution for proportion correct across the resa-
mpled expert (M = 79%) and novice (M = 57%) data.

2 Due to a labelling error, several participants saw 13 distractor trials 
and 11 target trials instead of 12 of each. Hence, there were slightly 
more distractor trials overall.
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Fig. 3    A representation of the relative proportion of hits, misses, 
false alarms, and correct rejections for signal and noise distribu-
tions that overlap. The vertical line in each panel depicts the decision 
threshold or response bias. In A, the system has no response bias. In 

B, the system has a conservative response bias and so there are more 
correct rejections and misses. In C, the response bias is liberal, result-
ing in a greater number of hits and false alarms
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Diagnosticity ratio

Diagnosticity ratio is a model of performance that combines 
sensitivity and specificity into one value. More specifically, 
it is a ratio of the odds of a same-source decision on same-
source trials relative to the odds of a same-source decision 
on different-source trials. To compute the ratio, sensitivity is 
divided by the inverse of the specificity (i.e., hit rate divided 
by the false alarm rate). Diagnosticity ratios have been used 
in several forensic studies, most notably in comparisons 
between sequential and simultaneous eyewitness lineups 
(see Wells & Lindsay, 1985; Steblay et al., 2011).

Taking the data from Tables 1 and 2 reveals that the diag-
nosticity ratio of experts in the fingerprint matching task was 
6.50, and for novices it was 1.35. Experts clearly performed 
better than the novices according to these ratios. Figure 4B, 
however, shows a tendency for these odds ratios to take on 
extreme values, especially if performance is not collapsed 
across participants. Extreme values occur when the false 
alarm rate or hit rate approach zero or one. Mickes et al. 
(2014) and Wixted and Mickes (2018) have also articulated 
why a diagnosticity ratio is frequently a poor measure of 
performance for a variety of other reasons, including the 
influence of response bias. Moreover, the diagnosticity ratio 
is more closely related to PPV than to discriminability (Wix-
ted & Mickes, 2018). For these reasons, we do not see much 
utility in using a diagnosticity ratio to gauge forensic perfor-
mance, and so we do not discuss it further.

dʹ (d‑prime)

Performance in signal detection theory is conceptualized as 
two overlapping Gaussian distributions, one representing 
signal and the other noise. In any task, however, a deci-
sion-maker uses some sort of threshold or criteria to make 
a decision. In the fingerprint discrimination task, for exam-
ple, experts erred on the side of caution, saying “different” 
more frequently than “same”, whereas novices said “same” 
more frequently than “different”. If an observer shifts their 
response bias, however, this can alter the number of hits, 
correct rejections, false alarms, and correct rejections (see 
Fig. 3). By extension, the values for proportion correct and 
diagnosticity change as well. Signal detection models such 
as dʹ (d-prime), Aʹ, and empirical AUC, have been devised 
to account for differences in response bias.

One of the most widely used signal detection measures 
is dʹ (Green & Swets, 1966). It is a measure of the distance 
between the signal and noise distributions, such as those 
depicted in Fig. 3. If the mean of the signal distribution is 
one standard deviation away from the mean of the noise dis-
tribution, then dʹ is equal to one. A higher dʹ means that the 
distance between the two distributions is greater, indicating 

that the observer can better distinguish noise and signal. To 
calculate dʹ, the standardized false alarm rate is subtracted 
from the standardized hit rate (Macmillan & Creelman, 
2005). By standardizing these values, the model factors in 
response bias by assuming that the values fall on hypotheti-
cal normal distributions. The variances of these distributions 
are also assumed to be homogeneous. In fact, dʹ monotoni-
cally maps onto proportion correct when there is an equal 
ratio of noise and signal trials (i.e., match and no-match 
trials) and there is no response bias. dʹ has been used as the 
key measurement model in several forensic matching studies 
(e.g., Estudillo et al., 2021; Towler et al., 2017; Vogelsang 
et al., 2017).

A common issue with using dʹ is that the performance 
estimates are unbounded, potentially being infinite or unde-
fined when the hit rate or false alarm rate are equal to zero 
or one. There are a few ways of addressing this issue. One 
solution is to aggregate data from several participants. In 
doing so, the chance of obtaining a value of zero or one is 
reduced since a larger sample is used to calculate the hit and 
false alarm rates. However, this solution is not viable if a 
researcher is interested in the performance of each individ-
ual, nor does it guarantee that the values will be appropriate 
after aggregation.

At least two computational solutions are also possible. 
Before computing dʹ (or even the diagnosticity ratio), a cor-
rection can be made. One option is Macmillan and Kaplan’s 
(1985) recommendation of converting all values of zero to 
0.5/n and all rates of one to (n – 0.5)/n, where n is equal to 
the number of signal or noise trials. Another option is the 
log-linear method (Hautus, 1995) where 0.5 is added to the 
number of hits and false alarms and 1 is added to the total 
number of signal and noise trials. For further discussion 
of the costs and benefits of these methods see Stanislaw & 
Todorov (1999). In this paper, we adopted Macmillan and 
Kaplan’s (1985) correction method. Figure 4C shows the 
distribution for dʹ across the resampled expert and novice 
data.

Aʹ (A‑prime)

Aʹ (A-prime; Pollack & Norman, 1964) has been proposed 
as a non-parametric alternative to dʹ. However, the assump-
tion that it is non-parametric has been challenged (Macmil-
lan & Creelman, 1996; Verde et al., 2006; Pastore et al., 
2003). Aʹ is nevertheless often used when the signal and 
noise distributions are presumed to have unequal variance. 
Rather than modelling the distance between the signal 
and noise distributions, Aʹ uses a ROC function to model 
performance. ROC analyses have long been relied on to 
measure discriminability in medicine (Lusted, 1971, Metz, 
1978; Pepe, 2000) and some have suggested they be used 

◂
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for evaluating forensic decision-making (Gronlund et al., 
2014; Mickes et al., 2012). Few forensic pattern matching 
studies use Aʹ, but it is popular in more basic categorization 
research (see Zhang & Mueller, 2005).

A ROC curve is a two-dimensional plot of the hit rate 
(y-axis) and false alarm rate (x-axis). Aʹ is calculated using 
only a single hit rate and false alarm rate, which define a 
single point on the two-dimensional plane. A series of quasi-
ROC curves (lines) can pass through this point, each with 
a different gradient, which extrapolate how the hit rate and 
false alarm rate might change with response bias. The area 
underneath each of these lines is a polygon with a certain 
area. Aʹ is defined as “the average of the maximum area and 
minimum area under the proper ROC curve constrained by 
the hits and false alarms.” The greater the area beneath a 
ROC curve, the better the performance. If the hit rate is one 
and the false alarm rate is zero, the area underneath the ROC 
curve would fill up the entire plane and Aʹ is equal to one. 
Performance is perfect. In signal detection terms, there is no 
overlap between signal and noise. For a person performing 
at chance levels, the ROC curve would be a straight line run-
ning from the bottom left to the top right of the plane with 
an area underneath of .5. An area of .5 is equivalent to signal 
and noise distributions that overlap completely.

Zhang and Mueller (2005) made a correction to the 
original computation of Aʹ. This correction computes the 
area differently depending on where the false alarm rate 
and hit rate intersect. We use this corrected method here. 
In instances where the false alarm rate was greater than the 
hit rate, we used the inverse of both values and subtracted 
the output from one. Figure 4D shows the distribution for Aʹ 
across the resampled expert and novice data.

Empirical AUC 

Aʹ and dʹ are examples of theoretical discriminability 
because they are not solely based on empirical data. Perfor-
mance at one decision threshold is extrapolated to others by 
making assumptions. Using theoretical estimates of perfor-
mance allows one to account for changing response biases 
given only a single hit rate and false alarm rate. However, 
these assumptions can be erroneous. The empirical area 
under the curve (AUC) is a signal detection model of per-
formance that does not rely on underlying assumptions about 
signal and noise.

Like Aʹ, empirical AUC is based on a ROC curve, but 
its computation requires a hit rate and false alarm rate at 
multiple decision thresholds rather than just one. Recall that 

Table 1  Binary classification table for expert participants

Expert says

“Same” “Different” Row total

Ground truth Same source (targets) 396
(Hits/True positives)

119
(Misses/False negatives)

515 Sensitivity = 76.89%
(396/515)

Different source (distrac-
tors)

64
(False alarms/false posi-

tives)

477
(Correct rejections/true 

negatives)

541 Specificity = 88.17%
(477/541)

Column total 460 596 1056
PPV = 86.09% (396/460) NPV = 80.03% (477/596) Proportion correct = 82.67%

(873/1056)

Table 2  Binary classification table for novice participants

Novice says

“Same” “Different” Row total

Ground truth Same source
(targets)

362
(Hits/true positives)

153
(Misses/false negatives)

515 Sensitivity = 70.29%
(362/515)

Different source
(distractors)

282
(False alarms/false positives)

259
(Correct rejections/
true negatives)

541 Specificity = 47.87% (259/541)

Column total 644 412 1056
PPV = 56.21% (362/644) NPV = 62.86% (259/412) Proportion correct = 58.81%

(621/1056)
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the participants in our fingerprint task from earlier provided 
a response about whether two prints came from the same 
source using a 12-point scale (1 = “sure different”, 12 = 
“sure same”). This response scale allows us to compute a 
hit rate and false alarm rate at 12 different points, forming 
a curve when plotted on a two-dimensional plane. The area 
under a ROC curve represents performance; an area of one 
indicates perfect performance whereas a value of .5 indicates 
chance performance. Empirical AUC can be computed in 
several ways, but we used the pROC package (Robin et al., 
2011) in R, which uses the trapezoidal rule. Conceptually, 
this method involves adding together the area of several 

trapezoids using the points along the ROC curve. Figure 4E 
shows the distribution for empirical AUC across the resam-
pled expert and novice data.

Several forensic performance studies have used empiri-
cal AUC as a key measurement model (Mickes et al., 2012; 
White & Phillips et al., 2015; Wixted & Mickes, 2018). 
Models of discriminability such as dʹ and Aʹ are useful when 
one knows the underlying distribution of signal and noise. 
However, for real-world decisions, some scholars advocate 
for atheoretical models like empirical AUC (Wixted & 
Mickes, 2018) because no assumptions need be made about 
how signal and noise vary in reality.

Fig. 4    A representation of resampled expert (purple) and novice 
(green) data for proportion correct (A), diagnosticity ratio (B), dʹ (C), 
Aʹ (D) and AUC (E). The rainclouds depict the distributions of every 
participant’s score across 100 expert and novice samples. Each rain-

drop indicates a group mean score and the connected red diamonds 
represent the average difference of the group means. Dashed lines 
represent chance performance
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Summary and considerations

There are several factors that researchers might consider 
when deciding which performance model to use. If under-
lying latent variables are of interest, then dʹ and Aʹ may be 
preferable whereas an empirical measure like AUC may be 
more suitable when interested in real-world performance. If 
a parametric measure is unsuitable, then Aʹ and AUC may 
be preferable (whether Aʹ is truly non-parametric, however, 
has been questioned). As continuous measures of similarity 
(e.g., 1 to 12) are more sensitive than dichotomous meas-
ures (e.g., same-source/different-source), empirical AUC 
may be preferred over dʹ or Aʹ. That said, a confidence rat-
ing scale may not reflect the options available to examiners 
in routine casework. The underlying assumptions of each 
model can have important implications for how researchers 
measure performance and the conclusions they might draw 
(for discussion, see Brady et al., 2023). There are also other 
performance models that we have not explored here (see, for 
example, Macmillan & Creelman, 1990; Rotello et al., 2008; 
Verde et al., 2006).

Whatever decision a researcher makes with respect to 
these models, the reasons for that decision, as well as how 
the model was computed and corrected, should be made 
explicit. For example, were the data aggregated among 
participants? Were extreme values corrected? How was the 
AUC calculated? We generally recommend that all analytic 
decisions and data be made as transparent as possible so that 
researchers can better understand and replicate each other’s 
work. These choices should also ideally be made prior to 
viewing and analyzing the data to reduce selective reporting 
of results (Chin et al., 2019), a practice known as preregis-
tration (see also the case for Registered Reports outlined by 
Chin et al, 2020). For the remainder of this paper, we explore 
how various performance models are affected by participant 
response patterns and experimental design variables.

Resampling method

For the remainder of the paper, we explore a variety of sce-
narios researchers may frequently encounter. We use a data 
resampling method to graphically demonstrate how perfor-
mance models (e.g., proportion correct, dʹ, Aʹ and AUC) 
are affected by variables such as response bias, prevalence, 
inconclusive responses, ceiling effects, case sampling, and 
number of trials. We will discuss how these variables can 
affect interpretations about expert performance in foren-
sics. Knowing the kinds of situations that can have a sig-
nificant impact on performance can help researchers make 
more informed decisions about which models to use and 
how to avoid drawing inaccurate conclusions from their 
observations.

The general methodology was quite similar in each sec-
tion. It extends on the data resampling method described 
earlier. We obtained the means and standard deviations for 
the expert and novice confidence ratings in the fingerprint 
discrimination task introduced above. We used these values 
to define distributions from which we then randomly sam-
ple data points (confidence ratings) for 44 experts and 44 
novices many times over, effectively simulating the experi-
ment 100 times. However, in each section we also modify 
a parameter by either gradually varying the means, varying 
the number of trials, or removing or replacing certain values, 
to see how these changes affect the performance models. Of 
course, each demonstration rests on the data and distribu-
tions from the fingerprint comparison task, but we inten-
tionally chose to base our work on this dataset to ensure our 
methods have direct relevance to real-world human perfor-
mance studies in forensics.

Response bias

Rachel wants to compare experts and novices on a fingerprint 
matching task like the one described earlier. She presents 12 
pairs of prints that are from the same source, and 12 pairs of 
prints that are from different sources, to 44 experts and 44 nov-
ices. She notices, though, that many experts are very hesitant 
to say “same,” so on most trials, they say “different.” Novices, 
on the other hand, don’t seem to have much of a bias in either 
direction. Do differences in response bias present a problem?

When introducing the various models of performance 
in previous sections, we noted that dʹ, Aʹ, and empirical 
AUC, which are grounded in signal detection theory, are 
supposed to account for response bias, whereas measures 
like proportion correct do not. There are many forensic dis-
ciplines in which examiners invariably exhibit a response 
bias. Fingerprint examiners, for instance, tend to err toward 
saying “different source” more than “same source” (Tangen 
et al. 2011), whereas firearms examiners appear to be more 
liberal in their responses (Mattijssen et al., 2020). For the 
purposes of evaluating human performance in pattern match-
ing, however, response bias must be disentangled from accu-
racy because response bias can confound accuracy (Smith 
& Neal, 2021).

To what extent does a more liberal response bias (saying 
“same” more), and a more conservative response bias (say-
ing “different” more), affect estimates of performance? We 
put this claim to the test by gradually either increasing or 
decreasing the response bias of the expert participants. We 
gradually varied their mean confidence ratings for the same-
source and different-source cases (see Fig. 5). The middle 
plot depicts expert and novice performance with values cor-
responding to the actual experiment. The plots further to the 
left illustrate expert performance as their responses become 
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more conservative; for each successive plot, the mean con-
fidence rating for the same-source and different-source trials 
both decrease by .5 on the 12-point scale. The plots further 
to the right illustrate the change in performance as responses 
become more liberal; the mean confidence ratings for both 
same-source and different-source trials increase by .5 for 
each successive plot.

Figure 5 shows that experts consistently outperform nov-
ices across all performance models despite changes to their 

response bias. However, the model that one uses can influ-
ence the extent of the expert-novice difference somewhat. 
For example, the expert-novice differences as measured by 
Aʹ and dʹ appear least affected by changes to response bias. 
Proportion correct, on the other hand, appears to slightly 
underestimate the expert-novice difference as the experts’ 
response bias becomes more pronounced. Empirical AUC 
for experts also appears to increase slightly as responding 
becomes more conservative.

Fig. 5    Expert (purple) and novice (green) performance varying the 
experts’ response bias. Rainclouds depict the distribution of partici-
pants’ scores across 100 ‘simulated’ experiments. Each drop depicts 
a group mean. The connected red points represent the average of the 
group means. The middle plot depicts real-world data. Plots further 

to the left depict more conservative responding from experts (less 
willing to say “same-source”). Plots further to the right depict more 
liberal responding from experts (more willing to say “same-source”). 
Novices have the same response bias in each plot. Dashed lines repre-
sent chance performance
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Summary and considerations

Our data indicate that the chosen model had little effect on 
performance despite shifts in the experts’ response bias. 
That said, dʹ and Aʹ appeared slightly more robust than pro-
portion correct and empirical AUC to these shifts. There are, 
however, caveats to these results. The experts in our original 
dataset were generally quite confident in their decisions on 
our 12-point scale, meaning that the underlying signal and 
noise distributions for our data were not precisely what some 
theoretical models might assume. Experts also significantly 
outperformed novices on the task, and while this is not sur-
prising in expert-novice research, a large performance gap 
can mean that small changes in either group's performance 
appears less striking. Relatedly, the shifts we made to the 
experts’ response bias may not have been extreme enough to 
greatly affect performance estimates. Although not obvious 
in our case, signal detection models (like dʹ, Aʹ and empiri-
cal AUC) generally have more utility than summary metrics 
like proportion correct when dealing with extreme response 
bias. We explain why this is so in the introduction. Moreo-
ver, the problem of conflating response bias and accuracy 
can be compounded by differences in prevalence. We turn 
our attention towards such a scenario next.

Prevalence rates

Sam intends to compare fingerprint matching experts and 
novices. However, he only has a limited number of finger-
prints from different sources. He decides to present par-
ticipants with more trials from the same source than from 
different sources. Sam also expects that experts will reply 
more conservatively than novices (saying “different” more 
frequently than “same”), whereas novices will be more lib-
eral in what they consider to be from the same source. When 
comparing experts and novices, does an unequal proportion 
of same-source and different-source trials pose a problem?

The effect of response bias can be exacerbated when the 
ratio of same-source and different-source trials is unequal. 
Growns and Kukucka (2021) have shown that when the pro-
portion of same-source trials is low, the proportion of misses 
increases. However, when the proportion of same-source tri-
als is high, the proportion of false alarms increases. Imag-
ine a situation in which 90% of trials come from the same 
source and only 10% come from different sources. Saying 
“same” on every trial (i.e., an extremely liberal response 
bias) would allow a person with no knowledge or exper-
tise with fingerprints to be 90% correct in their decisions. 
In contrast, a competent examiner who responds somewhat 
conservatively – to avoid false alarms – may have a smaller 

proportion correct than this novice merely because the 
majority of print pairs originated from the same source.

In the real world, the prevalence of signal to noise may 
vary significantly. In baggage screening, for instance, poten-
tially dangerous items appear in only a fraction of cases 
(Van Wert et al., 2009; Wolfe et al., 2005, 2007). Several 
forensic studies (e.g., Growns & Kukucka, 2021; Growns 
et al., 2022; Papesh et al., 2018; Weatherford et al., 2021) 
have demonstrated that performance can vary significantly 
based on the proportion of same-source to different-source 
trials. In fields like fingerprint identification and forensic 
face matching, the ground truth proportion of same-source 
versus different-source cases cannot be known for certain. 
However, an unequal number of signal trials and noise trials 
will affect measures of performance because sensitivity and 
specificity are given different weighting.

We resampled data from distributions based on the 
means and standard deviations for confidence in the finger-
print matching experiment described earlier. Note that the 
experts had a somewhat conservative response bias in this 
task whereas novices were more liberal. For each hypotheti-
cal participant, confidence ratings for 24 trials were sam-
pled. However, we either increased or decreased the number 
of same-source trials relative to different-source trials. We 
present the results in Fig. 6. The middle plot depicts per-
formance when the number of same-source and different-
source trials was equal (12 of each). As the plots move to 
the left, the number of trials from the same source decreases 
by three, and increases by three moving right. The leftmost 
plot depicts performance when just three of the 24 trials 
(12.5%) were from the same source, whereas the rightmost 
plot depicts performance when 21 of the 24 trials (87.5%) 
were from the same source.

Figure 6 shows that for proportion correct, experts per-
formed much closer to novice levels when most trials came 
from the same source. Conversely, the difference between 
experts and novices increased when there were more dif-
ferent-source trials. Changing the ratio of trials had rela-
tively little effect on dʹ, Aʹ and empirical AUC, but the group 
means at extreme ends became more variable.

Summary and considerations

The proportion of same-source versus different-source trials 
in an experiment can have a significant impact on an indi-
vidual’s or a group’s performance when using proportion 
correct. To eliminate the confound that response bias may 
have on performance, researchers could ensure that the pro-
portion of same-source and different-source trials is roughly 
equal. Relative to proportion correct, signal detection mod-
els such as dʹ, Aʹ or empirical AUC are also less affected 
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when there is an unequal proportion of same-source versus 
different-source trials.

Inconclusive responses

Chloe wishes to compare experts and novices on a finger-
print matching task. She offers three response options to par-
ticipants: same-source, different-source, and inconclusive. 

A response that is inconclusive would suggest that based on 
the information provided, the participant cannot determine 
whether the prints match. Because there are three response 
options, Chloe finds it challenging to apply signal detection 
theory to her data and is concerned that the different incon-
clusive response rates may present confusion.

In forensic disciplines such as firearms, shoe marks, 
handwriting, and fingerprints, it is typical for examiners to 
reach an inconclusive judgment. When an examiner cannot 

Fig. 6    Expert (purple) and novice (green) performance varying the 
prevalence of same-source and different-source cases. Rainclouds 
depict the distributions of participants’ scores on 24 trials across 100 
‘simulated’ experiments. Each raindrop depicts a group mean. The 
connected red points represent the average of the group means. The 

middle plot depicts performance with 12 same-source and 12 differ-
ent-source cases. Plots further to the left show performance when 
there are relatively more different-source prints. Plots further to the 
right show performance when there are relatively more same-source 
prints. Dashed lines represent chance performance
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determine whether evidence originated from the same source 
as a reference sample, the evidence is deemed inconclusive. 
The option to respond “inconclusive” allows examiners to 
refrain from making a determination and mitigates the pos-
sibility of a false identification or false exclusion (Arkes & 
Koehler, 2022). So far, we have discussed scenarios where 
examiners only have two options: same source or different 
source. What happens when a third option is introduced? We 
can take the expert data from the prior fingerprint matching 
experiment and classify all ratings of six and seven (rat-
ings of least confidence) as “inconclusive” to determine how 
inconclusive judgments could impact diagnostic accuracy 
(see Table 3).

Comparing Tables 1 and 3 reveals that the addition of an 
inconclusive response option boosts both the PPV and NPV. 
This makes sense given that the more challenging trials in 
which examiners were less confident have been removed 
from the calculation. As indicated previously, these predic-
tive values may be of most relevance to factfinders since they 
convey a sense of how certain one should be about a conclu-
sion. Permitting examiners to respond with “inconclusive” 
may be advantageous in court settings since it appears to 
increase confidence that a determination (if conclusive) will 
be in line with ground truth. However, this trade-off is offset 
by the fact that some cases that would have been correctly 
judged to be from the same source or from different sources 
are now classified as inconclusive.

The inconclusive positive predictive value (IPPV) in 
Table 3 suggests that when an examiner says “inconclusive,” 
the chance that the two impressions came from the same 
source is 47%, which means there is a 53% chance that the 
fingerprints came from different sources (inconclusive nega-
tive predictive value; INPV). Factfinders might therefore be 
less confident in an instance where an examiner says “incon-
clusive.” When a researcher has data on how many trials an 
examiner responds with “inconclusive”, then we recommend 
that this be taken into account when measuring PPV and NPV 

because these data are relevant. If inconclusive was a response 
option and not chosen, then a conclusive same-source or dif-
ferent-source decision should be more convincing.

The values for sensitivity and specificity in Table 3 are 
lower than in Table 1 because the inconclusive responses 
(in Table 3) are added to the tally in the denominator but 
not the numerator when calculating each performance esti-
mate. That is, an inconclusive decision reflects neither a hit 
(numerator for calculating sensitivity) nor a correct rejection 
(numerator for calculating specificity), but they are none-
theless a decision to be counted in the base rates for each 
true state. There is currently some debate over whether or 
not inconclusive responses should be counted as errors (see 
Arkes & Koehler, 2022; Biedermann & Kostoglou, 2021; 
Dror & Scurich, 2020; Morrison, 2022). Regardless of their 
classification, inconclusive decisions are decisions none-
theless, and a full consideration of examiners’ performance 
ought to take them into account. Researchers interested in 
validating a decision-making system, forensic methodol-
ogy, or new processes in a particular forensic laboratory, 
for example, may be concerned by these changes to sensi-
tivity and specificity because they suggest that including 
an inconclusive response option can artificially inflate or 
reduce error rates. Where inconclusive responses have been 
allowed, one solution to quantifying performance is simply 
to subdivide the remaining outcomes. Using Table 3, of the 
same-source trials that were not identified, 56% were misses 
and 44% were inconclusive. Of the different-source trials 
that were not excluded, 36% were false positives and 64% 
were inconclusive. However, this solution does not make it 
easy to compare performance between examiners, groups, 
or techniques.

Consider that by responding “inconclusive” to every case 
they see; examiners can avoid making any mistakes at all 
(in the sense of true misses and false alarms). Though this 
example is extreme, we can turn to a real-world study by Bird 
and colleagues (2010) in which professional handwriting 

Table 3  Classification table for expert participants (all ratings of 6 or 7 are coded as inconclusive responses)

Expert says

“Same” “Different” “Inconclusive” Row total

Ground truth Same source
(targets)

359
(Hits)

87
(Misses)

69 515 Sensitivity 
= 69.71%

(359/515)
Different source
(distractors)

43
(False alarms)

420
(Correct rejections)

78 541 Specificity 
77.63% 
(420/541)

Column total 402 507 147 1056
PPV = 89.30% (359/402) NPV = 82.84% (420/507) IPPV =

46.94%
(69/147),
INPV = 53.06%
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examiners were compared to novices in their ability to dis-
tinguish between genuine and disguised handwriting sam-
ples. In this situation, it would be important to determine 
how effectively each group can distinguish genuine samples 
(signal) from disguised samples (noise). In each case, how-
ever, participants were given three response options: identify 
(same source), exclude (different source), or inconclusive 
(unable to identify or exclude). Professional examiners were 
correct on 73% of the trials and responded “inconclusive” 
on 23% of the trials. Novices were correct on 80% of trials 
and responded “inconclusive” on 8% of trials. The number of 
correct responses by novices was higher than that of examin-
ers; did novices therefore do better than examiners? Or did 
examiners do better because they made errors only 4% of the 
time, whereas novices made errors 12% of the time?

Based on the above findings, Bird and colleagues drew 
the conclusion that handwriting expertise requires the ability 
to determine when there is sufficient information to make a 
determination. However, a researcher could simply instruct 
novices to make a conclusive decision only when they are 
extremely confident, which would likely increase the num-
ber of inconclusive decisions. If judging sufficiency were an 
ability, it ought to depend much less on the characteristics or 
instructions of the task. This behavior might be better char-
acterized as a willingness or bias to say ‘inconclusive’. The 
performance of a confident participant, who is more likely 
to make a call, and a cautious participant, who is less likely 
to make a call, depends a lot on how inconclusive decisions 
are factored into the overall evaluation of performance. We 
explored how inconclusive responses affect performance 
estimates (see Fig. 7). Once again, we used real expert and 
novice fingerprint matching data, but gradually increased the 
experts’ propensity to respond with “inconclusive”.

The data underlying the leftmost plot in Fig. 7 offers a 
baseline where none of the examiner or novice responses 
were replaced with “inconclusive.” However, the plots fur-
ther to the right depict performance as more ratings are sub-
stituted for “inconclusive.” All confidence values between 
5.5 and 7.5 were coded as inconclusive for the plots second 
from the left. All ratings between 4.5 and 8.5 were coded 
as inconclusive for the plots third from the left, and so on. 
Importantly, trials where experts responded with “inconclu-
sive” were not included in computing performance.

Figure 7 illustrates that when inconclusive trials are 
eliminated from the calculation of performance models, 
performance appears to improve. Trials judged to be incon-
clusive are challenging by definition, so removing them 
makes performance look better. When participants are able 
to provide inconclusive responses, it would therefore be mis-
leading to use signal detection models, as any value would 
be affected by how willing a participant is to make a call. 
Signal detection theory relies on a binary outcome, but this 
is no longer true when inconclusive decisions are allowed. 

Moreover, a judgment of similarity (e.g., same-source vs. 
different-source) is distinct from a judgment of whether suf-
ficient evidence exists to make a call (conclusive evidence 
vs. inconclusive evidence).

Even without knowing what someone would have decided 
if they had not said “inconclusive,” it could be assumed that 
when someone says “inconclusive,” they are truly undecided 
about whether the evidence comes from the same source or a 
different source. Given this assumption, we can now include 
all trials, including inconclusive decisions, when calculating 
performance. In Fig. 8, we display the same data as Fig. 7, 
but all inconclusive responses have now been substituted 
for a confidence rating of 6.5 (the midpoint between 1 and 
12) when calculating empirical AUC, and a score of 0.5 for 
accuracy (the midpoint between 0 and 1). None of the nov-
ice responses were substituted with “inconclusive” as these 
serve as a baseline. Moving further right in the Fig. 8, an 
increasingly wider range of expert responses were re-labeled 
as "inconclusive."

For all models depicted in Fig. 8, expert performance 
now decreases as the proportion of inconclusive responses 
increases, approaching novice levels with each consecutive 
plot. Whereas removing all inconclusive trials can inflate 
performance, treating an inconclusive response as a coin 
toss in the mind of the observer reduces performance. An 
examiner may not be completely on the fence when they 
say “inconclusive” so adding randomness when a person is 
better than chance can only harm performance. When there 
is a choice of whether to include or exclude evidence, an 
inconclusive response does not necessarily mean that an 
examiner is completely unsure. Rather, it indicates that they 
have low confidence in making an accurate decision and may 
be taking precautions to avoid false positives and misses.

Summary and considerations

Including an inconclusive response option when measur-
ing performance is problematic because performance can 
be artificially inflated or reduced depending on how the 
inconclusive responses are handled. Deciding whether two 
impressions came from the same source is different from 
deciding whether there is sufficient evidence to make such 
a decision. The latter judgment is about the preponderance 
of evidence whereas the former is about source. Research-
ers might therefore want to collect a forced-choice response 
(either on a dichotomous scale or a continuous scale) about 
source (e.g., same source/different source, identification/
exclusion) separately from a response about whether there is 
sufficient evidence. Inconclusive responses can, for example, 
be collected before or after the source question using either 
a two-response question (i.e., conclusive or inconclusive) or 
a three-response question that reflects case work (i.e., exclu-
sion, identification, inconclusive). Including both questions 
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allows one to learn how many cases (and which ones) evoke 
an inconclusive response and therefore the ability to com-
pute predictive values that are useful to factfinders, but per-
formance can also then be measured using signal detection 
theory in a way that is not undermined by the presence of a 
third response option.

Task difficulty

Matt wants to see how well a group of examiners performs 
compared to novices on a fingerprint matching test with 
24 cases, half of which are from the same source and half 
are from different sources. The expert group is correct in 

Fig. 7  Expert (purple) and novice (green) performance as if experts 
become progressively more likely to say “inconclusive.” Rainclouds 
depict the distributions of participants’ scores across 100 ‘simulated’ 
experiments where each drop depicts a group mean. The connected 
red points represent the average of the group means. In the plot on the 
far left, experts never respond with “inconclusive”. As the plots move 

right, experts respond “inconclusive” more often: the interval of con-
fidence ratings coded as “inconclusive” increases by two points (on a 
12-point scale) for each successive plot. Trials rated as “inconclusive” 
were excluded from performance calculations. Dashed lines represent 
chance performance
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virtually every instance, and he’s impressed by their per-
formance. But then Matt gives the same task to a group 
of undergraduate students, and he finds that they also do 
extremely well. Matt is now unsure whether the experts are 
actually better than the novices, or whether his test is a poor 
assessment of their abilities.

Forensic proficiency tests have come under fire in recent 
years for being too simple. For instance, professional exam-
iners performed exceptionally well on proficiency tests 

created by collaborative testing systems (CTS), but it was 
later found that even people with no formal experience with 
fingerprints could identify many of the test cases correctly 
(Smith, 2019). Many forensic proficiency tests are too easy 
(Koehler, 2017). To be considered an expert in a field, one 
must be able to perform better than untrained individuals 
in situations where the expert claims to be proficient. When 
experts and novices achieve similar results on a test, either 
the experts are not true experts, or the task is not a good 

Fig. 8  Re-presentation of expert (purple) and novice (green) data 
from Fig.  7 as if experts are gradually more willing to say “incon-
clusive,” but with inconclusive responses now coded as half correct 
and half incorrect. Rainclouds depict the distributions of participants’ 
scores across 100 ‘simulated’ experiments with each drop depict-

ing a group mean. The connected red points represent the average of 
the group means. The plot on the far left depicts performance when 
experts never respond with “inconclusive”. Plots moving right depict 
performance as if experts select “inconclusive” more often. Dashed 
lines represent chance performance
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indicator of competence. How well a test can distinguish 
between experts and novices is also largely dependent on 
the test’s difficulty.

We explored how the performance of experts and novices 
can differ as a test becomes easier (see Fig. 9). We again 
used the means and standard deviations from the finger-
print task from earlier. Baseline performance is illustrated 
by the leftmost plots in Fig. 9. Each plot moving to the right 
shows performance as if the task was made easier. For the 

same-source trials, the mean for each group was increased to 
be 25% closer to 12 for each successive plot, and the means 
for different-source trials were gradually decreased to be 
25% closer to 1.

Experts outperformed novices in the real world (leftmost 
plots in Fig. 9) across all performed models. However, as the 
trials become easier on average, both experts and novices 
perform closer to ceiling, and they become virtually indis-
tinguishable across all measurement models. A test’s ability 

Fig. 9  Expert (purple) and novice (green) performance varying the 
difficulty of the cases. Rainclouds depict the distributions of par-
ticipants’ scores across 100 ‘simulated’ experiments with each drop 
depicting a group mean. The connected red points represent the aver-
age of the group means. The leftmost plot depicts real-world finger-

print comparison performance. The plots further to the right depict 
performance as if cases become 25% easier. Eventually, the perfor-
mance of the two groups becomes indistinguishable. Dashed lines 
represent chance performance
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to differentiate between experts and novices is compromised 
if everyone, experts and novices alike, can achieve a similar 
level of performance. A similar problem can arise if the test 
is too difficult, as both experts and novices may struggle to 
pass it. Because the groups are not as easily distinguishable 
as they should be, the test fails as a measure of skill.

Summary and considerations

An expert is someone who consistently outperforms the 
great majority of other people in a given domain. If a test 
fails to differentiate between experts and novices, either the 
experts are not really experts, or the test is a poor indica-
tor of domain expertise. We cannot know which of these 
propositions is true if a test is given to a group of experts but 
not to a novice control group. Researchers might consider 
including a control group when measuring performance in 
forensic domains, or when validating a test. Likewise, pilot 
testing the difficulty of test trials helps ensure that a test 
is neither too easy nor too challenging. Because everyone, 
including non-experts, will appear to perform well on a sim-
ple test, it will be impossible to identify genuine expertise 
when it exists. A test that is overly difficult will fail to detect 
true expertise when it exists, as everyone, including experts, 
will appear to perform poorly. A good test reveals variance 
in performance.

Trial sampling

Brooklyn designs an experiment to see if her training inter-
vention can increase people’s performance on a match-
ing task. She gives each participant in her study the same 
fixed sequence of 24 trials before training, and then tests 
them again after training with a completely different fixed 
sequence of 24 trials. Brooklyn discovers that the group 
improved from pre- to post-test, but she is uncertain about 
whether the source of these improvements was the training 
intervention or because different cases were used at pre- and 
post-test.

So far, we have focused on situations in which experts 
are compared to novices. In contrast, Brooklyn tests a single 
group of novices both before and after her training interven-
tion. The implications of this section are relevant for any 
study, but they are especially important when dealing with 
a small sample size or a limited number of trials. Confounds 
can be caused by differences in the test cases given to differ-
ent groups or at different times. In Brooklyn’s case, we don’t 
know if the trials given before training are harder or easier 
than the ones given at the end of training. A disproportionate 
number of easy (or hard) trials in one test, but not another, 
can skew conclusions about the effectiveness of the training 
intervention. Maybe the subjects were lucky enough to be 

tested with more difficult trials first, followed by easy trials 
after training, or vice versa.

To demonstrate, we again used the novice means and 
standard deviations from the earlier fingerprint experiment 
as the basis for our resampling method. In Fig. 10, novice 
performance at pre-test is displayed in green, and perfor-
mance at post-test is displayed in purple. The leftmost plot 
shows a situation where neither group had particularly easy 
trials and the two distributions overlap almost entirely. This 
makes sense as we are assuming that the training interven-
tion had no effect on performance. However, we systemati-
cally increased the number of easy trials for the post-test 
group in each successive plot moving right. Specifically, 
all participants responded with 1 (“sure different”) on a 
certain number of non-match trials. We increased the num-
ber of easy trials by one for each plot moving right. In the 
rightmost plot, four of the 24 trials that the post-test group 
received were easy. The values displayed above each plot 
indicate the p-value for the median t-test statistic across the 
100 resampled experiments.

Figure 10 reveals that even if a training intervention did 
not improve performance in reality, a small increase of just 
three easy trials out of 24 (12.5%) at post-test can result in a 
significant difference in performance between pre-test and 
post-test more than half the time. In the case of empirical 
AUC, just two trials were required to produce a consistent 
significant difference. Using fixed sequences and not provid-
ing a control group may result in unintended differences in 
the cases presented to different groups or conditions. These 
differences leave the door open for confusion, which limits 
what researchers can infer about performance.

Summary and considerations

Fixed sequences can make it difficult for researchers to 
determine if a difference between two groups, or two time-
points, was caused by an interesting effect or intervention, 
or whether it was simply due to a difference in the trials 
presented. There are a variety of solutions to this problem. 
First, as mentioned in the preceding section, researchers 
could include a control group in their study design. Even if 
fixed sequences are used, differences in the trials can be con-
trolled for if participants who receive training are compared 
to another group that receives no training at all, or another 
intervention altogether. Researchers can also counterbalance 
which fixed sequence a participant sees at each timepoint. 
Some can receive Sequence A at pre-test and Sequence B 
at post-test, whereas others can receive B first and then A.

Alternatively, one can generate a completely unique, ran-
dom sequence of trials for each participant, which can be 
sampled from a larger pool. Though this sampling method 
may increase noise, it will increase the generalizability of 
a study’s results because they would be based on a broader 
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cross-section of trials. Researchers could even randomize 
sequences whilst also ensuring that a member of each group 
is presented with the same randomized sequence as a mem-
ber of the other group. This method ensures that results 
are generalizable while also reducing noise. In fact, in the 
earlier fingerprint experiment, members in each matched 

expert-novice pair were shown the same unique, rand-
omized sequence of trials. With all this said, however, fixed 
sequences can be useful for detecting differences with the 
greatest sensitivity, particularly in research on individual dif-
ferences (see Mollon et al., 2017).

Fig. 10  Pre-test novice group (green) and a post-test novice group 
(purple) for a training study where the training intervention had no 
effect on performance. Rainclouds depict the distributions of par-
ticipants’ scores across 100 ‘simulated’ experiments with each drop 
depicting a group mean. The connected red points represent the aver-
age of the group means. The leftmost plot depicts performance when 

the ease of the pre-test and post-test were identical. Plots further 
to the right include an increasing number of easy trials in the post-
test case set, from zero on the leftmost plot to four on the rightmost 
plot. The p values displayed correspond to the median t test statistic. 
Dashed lines represent chance performance
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Number of trials

Jason is aware of Brooklyn's earlier predicament; he knows 
that the disparities between pre- and post-test performance 
could be due to a few particularly easy trials. Jason wants 
to avoid this problem, so he decides to increase the number 
of trials in his experiment. He suspects that the effect of the 
easy trials will be negated in the aggregate because these 
easy trials will have proportionally less impact on overall 
performance.

To rule out the possibility that any apparent differences 
between groups or timepoints are due to chance, researchers 
may choose to include additional trials in their test. How-
ever, participants in high-profile tests like those discussed 
earlier may only be exposed to fewer than a dozen trials. 
When evaluating performance, having fewer trials means 
that performance estimates are less reliable so researchers 
should be less confident in their conclusions and generaliz-
ability of such studies.

We explored how many trials might be required to counter-
act the influence that a small number of easy trials can have 
on pre-post performance gains. We used the mean and stand-
ard deviation of novice performance in the earlier fingerprint 
task and assumed that the hypothetical training intervention 
has no effect on performance. Thus, the groups should not 
have differed statistically with randomly sampled cases. Four 
easy trials were sampled at post-test whereas no easy trials 
were included at pre-test. To mimic the easy trials, we simply 
ensured that four of the different-source trials received a rat-
ing of 1 (“sure different”) from each hypothetical participant. 
The data are presented in Fig. 11 where the green distributions 
represent pre-test performance, and the purple distributions 
represent post-test performance. For each plot moving right, 
we doubled the total number of trials that we sampled.

Figure 11 shows a lot more variation in performance 
when there are fewer trials. In addition, the gap between 
the distributions widens when the total number of trials is 
small and narrows when the total number of trials increases. 
Easy trials have less influence on performance when they 
account for only a small proportion of overall trials. How-
ever, up to 96 trials are needed for performance to become 
non-significant more than half of the time for proportion 
correct, dʹ and Aʹ. For AUC, up to 192 trials are required. In 
other words, even a small number of easy trials in one test 
set and not another can have a major impact on performance, 
and this issue might not be easily solved by simply adding 
more trials.

Summary and considerations

When only a few trials are used to assess performance, the 
presence of a few easy trials in one group or at one timepoint 

can significantly affect performance. Increasing the total 
number of trials can lessen the effect that these trials have, 
but many trials are required. To circumvent any potential 
problems posed by specific sequences of trials, research-
ers may choose to include as many trials as is practical in 
conjunction with more stringent case selection procedures, 
such as counterbalancing and random sampling of trials for 
each participant.

Take Home Messages
• Determining when and what performance metric to use: Courts 

are interested in positive and negative predictive values because 
they characterize the reliability of an examiner’s judgment. In the 
hands of a human examiner, however, the general validity of a 
forensic method is best described by its sensitivity, specificity, and 
discriminability, which come from signal detection models that take 
these values into account.

• Transparent research practices: Specifying design and data 
analytic decisions prior to analyzing one’s data (preregistration) as 
well as making materials and data as transparent as possible, will 
help ensure the reliability of research in forensic science and its 
practical impact.

• Response bias and prevalence: Discriminability metrics (dʹ, 
Aʹ, empirical AUC) are more robust to response bias effects and 
unequal ratios of same-source and different-source cases compared 
with metrics that simply count the number of correct vs. incorrect 
judgments (i.e., proportion correct).

• Inconclusive responses: The handling of inconclusive judgements 
can greatly affect estimates of forensic examiners’ performance. 
Consider collecting inconclusive judgments separately from forced-
choice judgments about source. Collecting data for these two claims 
separately allows one to compute discriminability and response bias 
irrespective of an inconclusive decision, and to compute PPV and 
NPV taking into account inconclusive decisions.

• Task difficulty: Without an appropriate comparison group, it is 
impossible to determine whether a test was too easy or too difficult 
for the target expert population (e.g., fingerprint examiners), render-
ing a single performance estimate for this population worthless. 
This issue can be resolved by including a comparison group (e.g., 
non-experts).

• Trial sampling: Fixed trial sequences, where different participant 
groups see different sets of cases, can introduce spurious effects 
in some circumstances. To remedy this issue, consider randomly 
selecting trials from large case sets for each participant. Other 
solutions include counterbalancing and yoking participant trial 
sequences.

• Number of trials: Experiments with only a small number of tri-
als can produce unreliable performance estimates. Increasing the 
number of trials is a simple method for improving performance 
estimation.

Conclusions

Our goal with this paper was to give useful descriptive guid-
ance for anyone interested in creating and assessing studies 
that model the performance of forensic examiners and their 
procedures. We have explained how signal detection theory 
can be used to conceptualize performance, outlined several 
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commonly used models of performance, and reported new 
data on the performance of novices and expert fingerprint 
examiners. We then used these results to define distributions 
from which we could resample data and explore how differ-
ent models of performance hold up in a variety of scenarios. 
In doing so, we offer considerations and solutions to many 
issues that researchers frequently face when studying foren-
sic examiner performance. Many of these considerations 

complement advice offered by other scholars such as Martire 
and Kemp (2018).

Partitioning examiners’ decision outcomes into esti-
mates of positive and negative predictive values, for exam-
ple, would be most useful in contexts where the probabil-
ity of the true state (e.g., the prints were made by the 
same source) given the examiner’s judgment (e.g., when 
the expert says “same source”) is of primary interest. The 

Fig. 11  Pre-test novice group (green) and a post-test novice group 
(purple) for a training study where the training intervention had no 
effect on performance, but the post-test case set had four easy trials. 
Rainclouds depict the distributions of participants’ scores across 100 
‘simulated’ experiments and each drop depicts a group mean. The 

connected red points represent the average of the group means. In the 
leftmost plot, 12 trials are presented. The trials double with each suc-
cessive plot moving right. The p values displayed correspond to the 
median t test statistic. Dashed lines represent chance performance



6245Behavior Research Methods (2024) 56:6223–6247 

PPV and NPV are most likely to be useful when the true 
state is unknown, like when evaluating the credibility of a 
forensic examiner’s source-attribution testimony in court. 
On the other hand, separating examiners’ decisions into 
estimates of sensitivity and specificity, and/or combining 
these values using the performance models discussed here, 
is a better way to answer general questions about the valid-
ity of a forensic technique, method, or decision-making 
system. For these kinds of questions, we need to know 
the probability of the examiners’ decision (e.g., the expert 
says “same source”) given the true state (e.g., the prints 
were made by the same source). If researchers and forensic 
examiners can agree on how to measure and model per-
formance, make their data available to others, and make 
their analytic decisions transparent, then it will be pos-
sible to gain a better understanding of expert forensic pat-
tern matching ability as well as how to best communicate 
errors in forensic decision-making to factfinders.
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